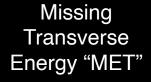
First observation of production of three massive gauge bosons

Philip Chang Harvard/MIT HEP Seminar June 17, 2020

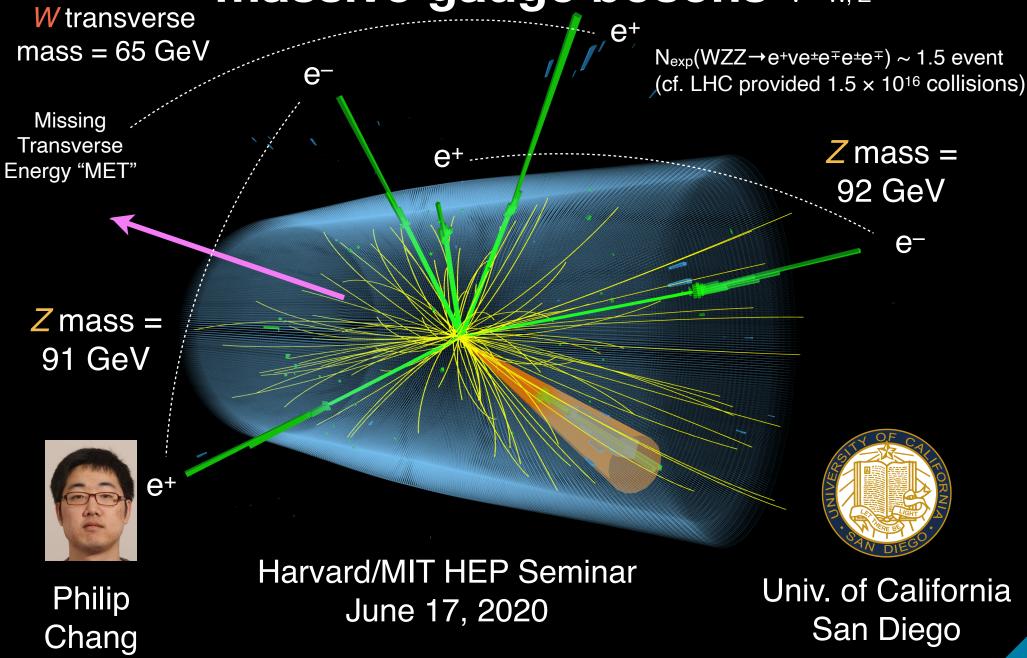

Univ. of California San Diego

First observation of production of three massive gauge bosons v=w,z

 e^+

e-

 e^+



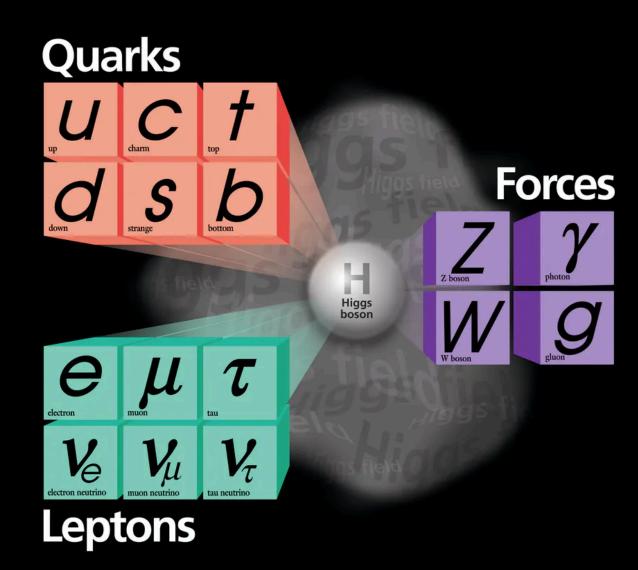
 e^{-}

Philip Chang Harvard/MIT HEP Seminar June 17, 2020

Univ. of California San Diego

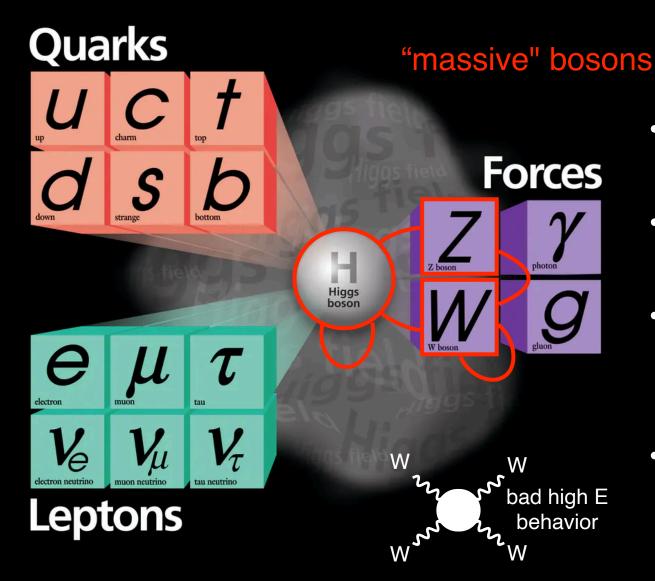
First observation of production of three massive gauge bosons v=w,z

Discovery of Higgs boson



July 4, 2012

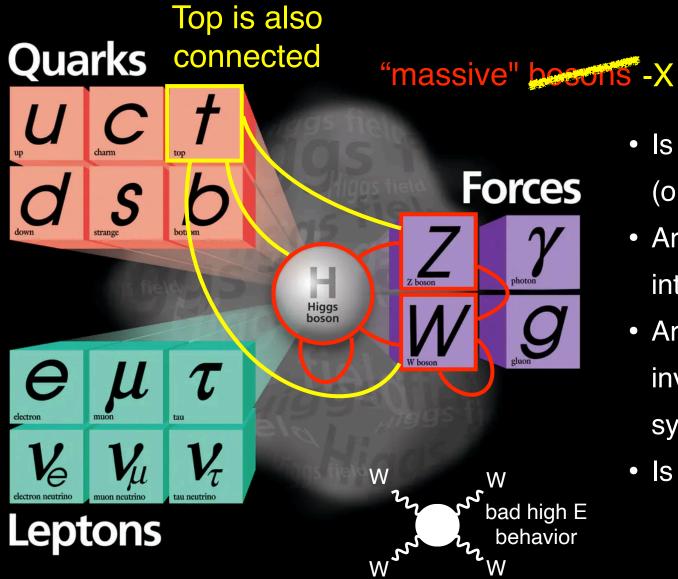
Discovery advanced our knowledge of origin of mass in a major way



• Is it the only Higgs boson?

(or are there more?)

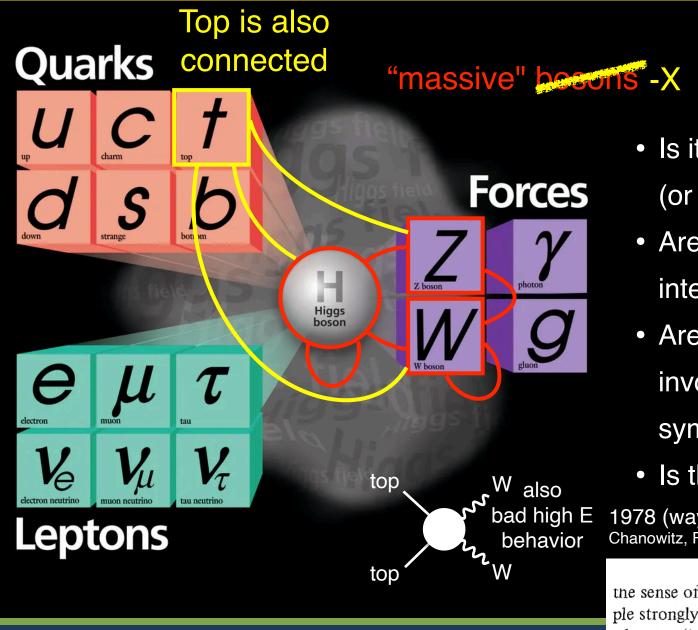
- Are multi-*bosons* interactions SM?
- Are there more states involved in electroweak symmetry breaking?
- Is the Higgs potential SM?


Is it the only Higgs boson?

(or are there more?)

- Are multi-*bosons* interactions SM?
- Are there more states involved in electroweak symmetry breaking?
- Is the Higgs potential SM?

More work to be done in electroweak sector


• Is it the only Higgs boson?

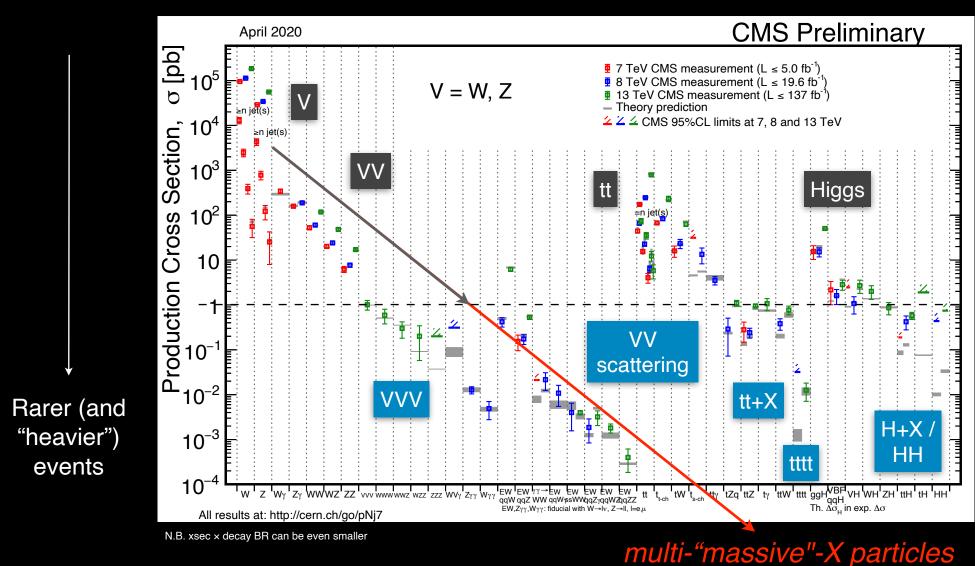
(or are there more?)

- Are multi-<u>bosons</u> interactions SM?
- Are there more states involved in electroweak symmetry breaking?
- Is the Higgs potential SM?

More work to be done in electroweak sector

• Is it the only Higgs boson?

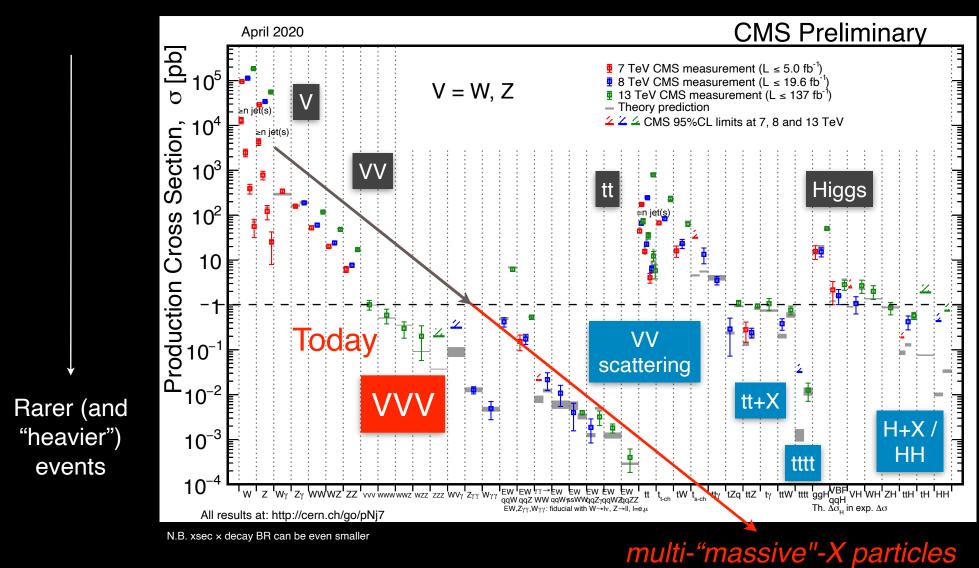
(or are there more?)


- Are multi-<u>bosons</u> interactions SM?
- Are there more states involved in electroweak symmetry breaking?
- Is the Higgs potential SM?

1978 (way) before top/W/Z/Higgs discovery Chanowitz, Furman, Hinchliffe

 F, W^{\pm}, Z and H become "sthenons" in the sense of Appelquist and Bjorken [4]: they couple strongly to one another ^{± 1} but weakly to nonsthenons (i.e., the light particles in the theory).

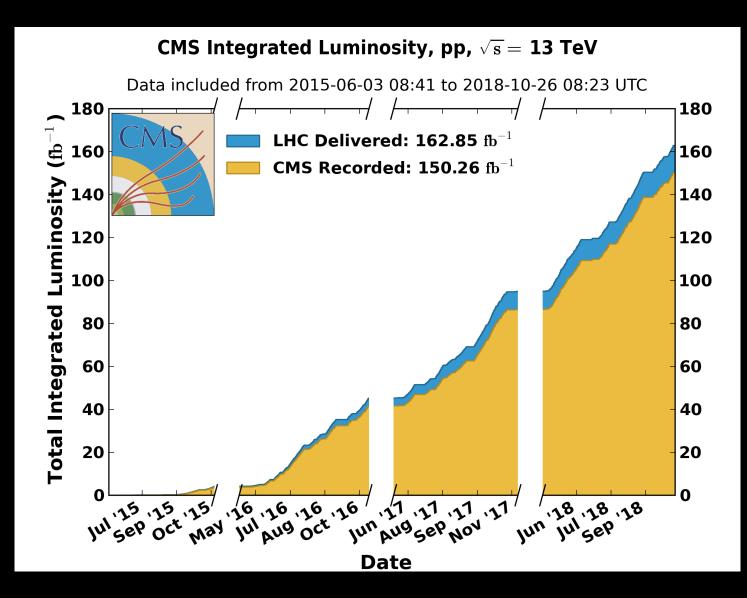
Multi-"X" processes are rare and "heavy"



Below picobarn most SM processes are electroweak multi-X production

X = t, W, Z, H

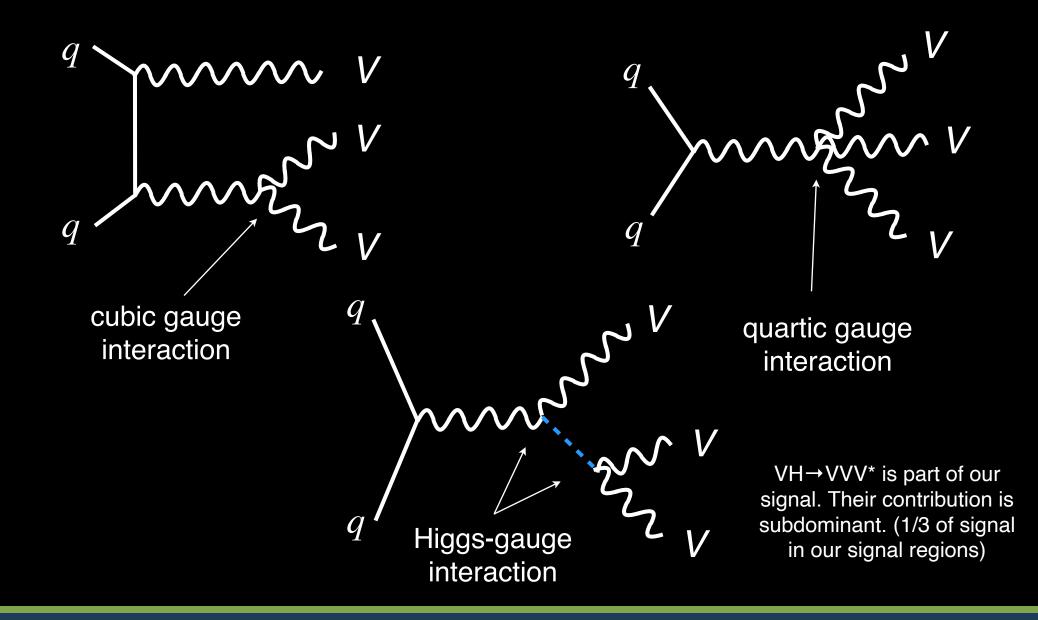
Multi-"X" processes are rare and "heavy"


X = t, W, Z, H

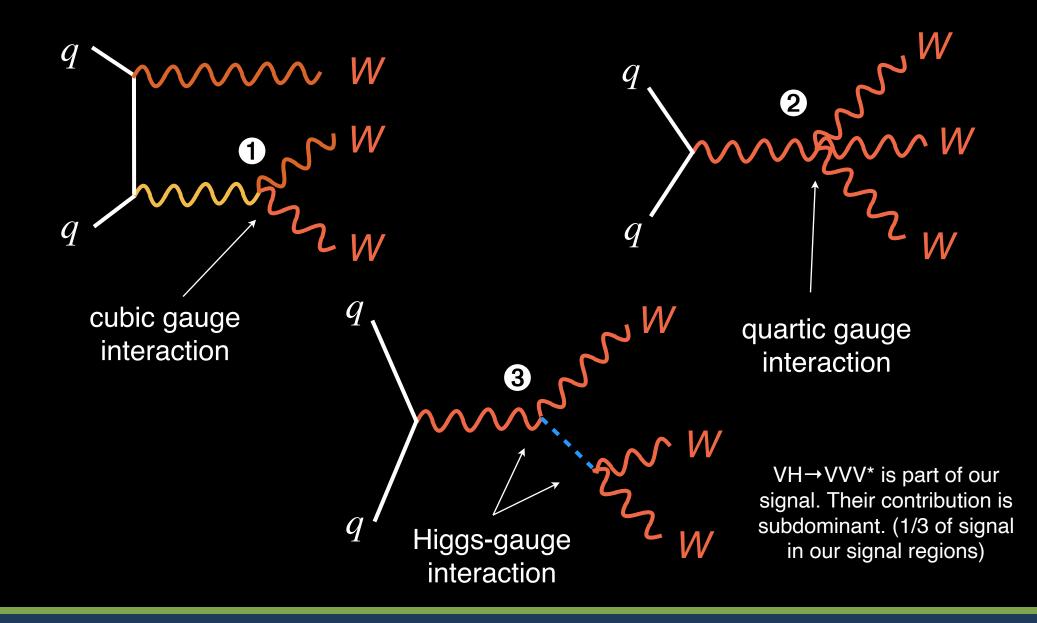
Below picobarn most SM processes are electroweak multi-X production

We need LHC's large and energetic pp collision data Chang

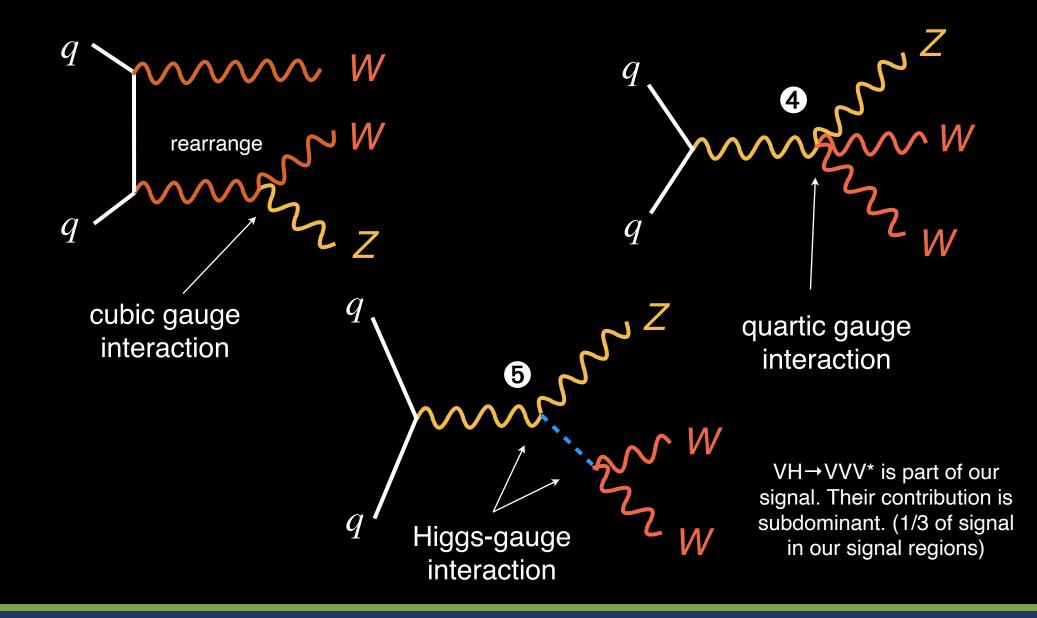
because "heavy"

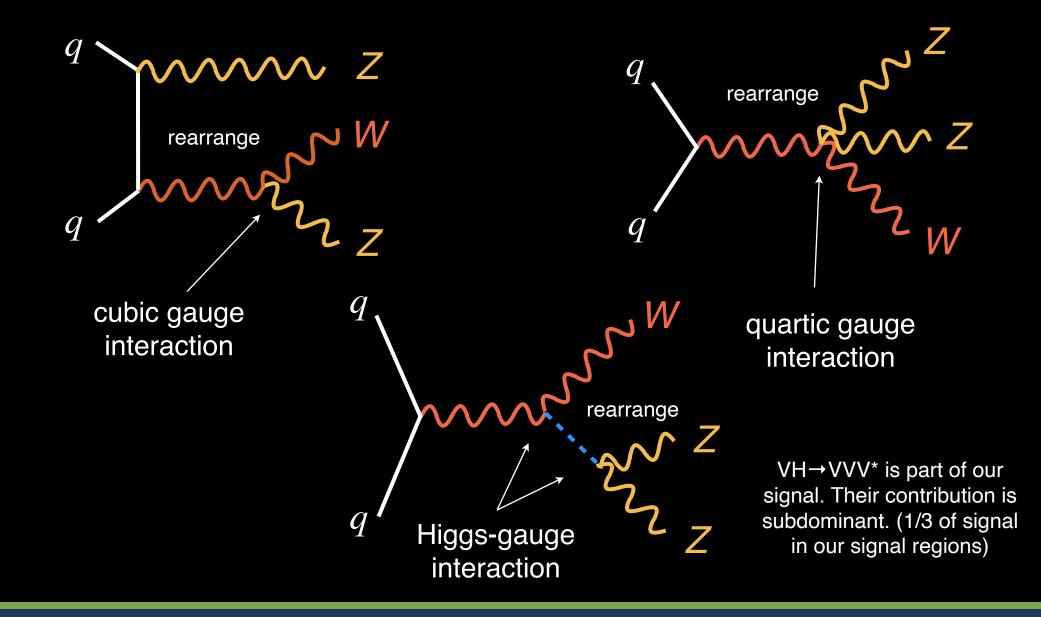

because rare

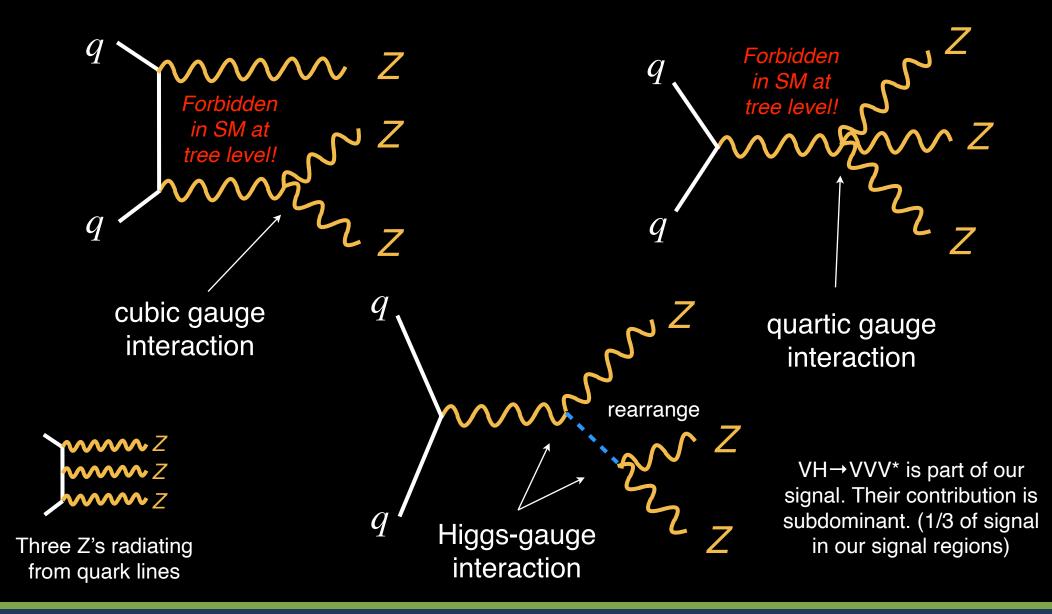
Multiply by 1000 to get the number of events produced for a picobarn process

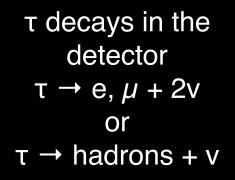

During Run 2, CMS recorded 150 fb⁻¹ of which 137 fb⁻¹ have been validated as good quality data useable for physics analysis

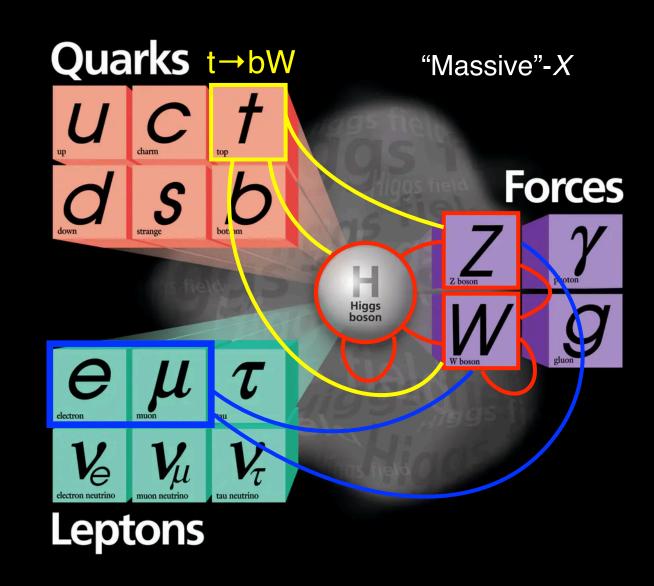
LHC's large data enables us to study rare EW multi-X processes





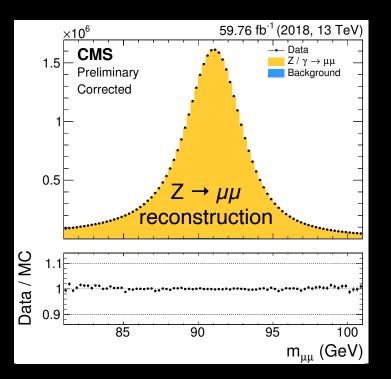


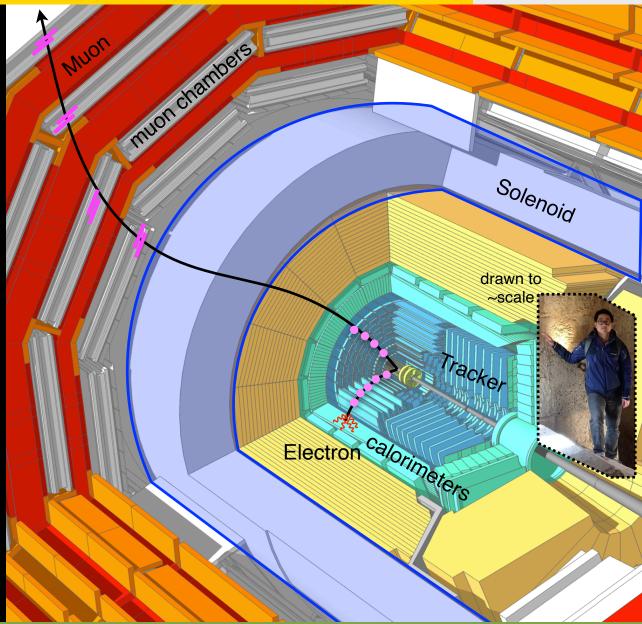



Decay of W, Z bosons

 $W \rightarrow e/\mu$ (~20%) $Z \rightarrow ee/\mu\mu$ (~7%) We select leptons w/ transverse momentum (P_T) of > 25, 20, 10

We include e, μ from τ 's from W/Z decays in the analysis But they have quite soft P_T and do not pass the P_T requirements




W's and Z's produced can be identified via electrons and muons

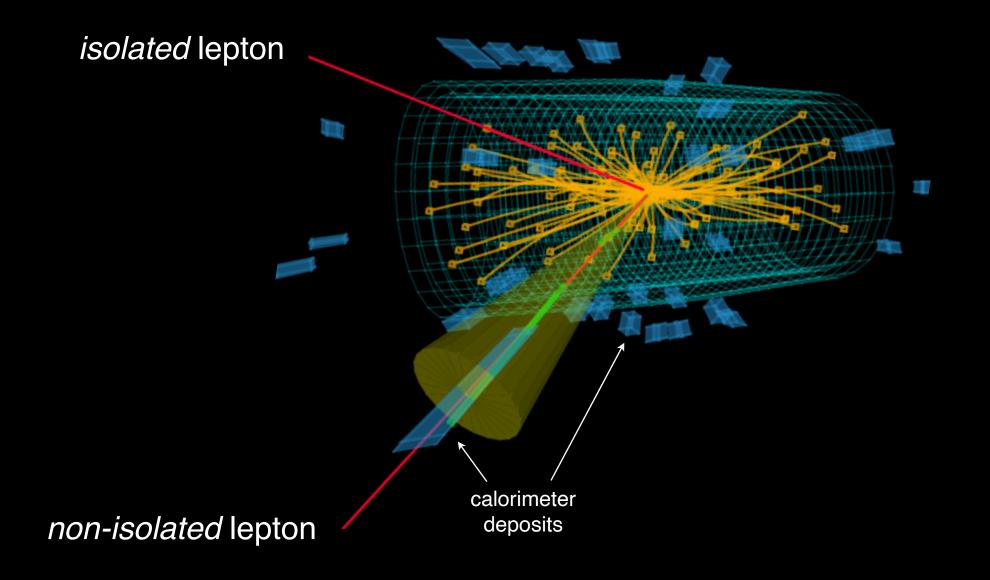
CMS detector measures leptons very well

e/μ among the best measured particles at CMS by combining tracker, calorimeter, and chambers measurements

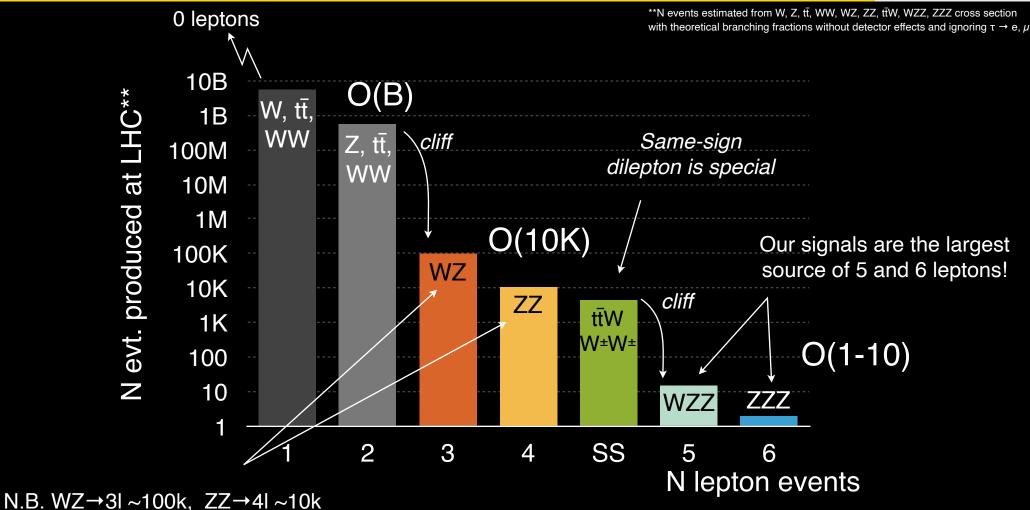
(1-2% resolution for well measured ones)

Excellent lepton reconstruction and simulation at CMS

Classifying leptons' origins


(muons are cleaner)

non-isolated lepton Identifying leptons is isolated lepton not enough π, K, etc. (also lepton) cone We need to further classify the origin cone Σ "stuff" in cone P_T lsolation =b lv, qq b P_{T,Lepton} N.B. electrons and muons protons protons 66000 g have different effects g


Use isolation to discriminate against leptons from heavy flavor decay Dubbed "fake lepton" **Example**

Lepton physics at the LHC

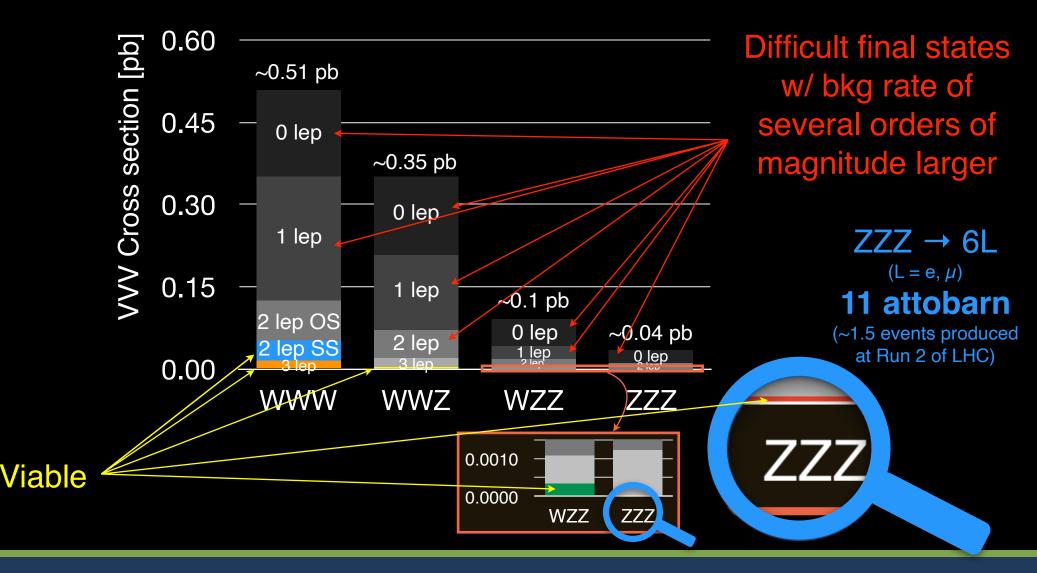
The more leptons produced the lower the rate (i.e. lower bkg.)

Useful to organize physics analyses by N leptons

1. Organize analyses by leptons (likely) from W / Z

- N leptons in the event
- Flavor of the leptons
- 2. Reject events with b jets

Smart humans and smart machines (Both cut / BDT)


- 3. Additional background suppression through smart choices
- 4. Reliably estimate the size of residual backgrounds
- 5. Observe VVV!

VVV channels in # of leptons

Production cross section decreases with more Z's

Viable final states have O(fb) or less cross sections

VVV analyses overview by N leptons

	Target "fully" leptonic final states to go after first observation				
	Same-sign				
	2 leptons	3 leptons	4 leptons	5 leptons	6 leptons
Signals	$V \stackrel{\pm}{} \rightarrow / \stackrel{\pm}{} v$ $V \stackrel{\pm}{} \rightarrow / \stackrel{\pm}{} v$ $V \stackrel{\mp}{} \rightarrow qq$	$ \begin{array}{c} \mathcal{W} \rightarrow \mathcal{I}_{\mathcal{V}} \\ \mathcal{W} \rightarrow \mathcal{I}_{\mathcal{V}} \\ \mathcal{W} \rightarrow \mathcal{I}_{\mathcal{V}} \end{array} $	$W \rightarrow lv$ $W \rightarrow lv$ $Z \rightarrow ll$	$W \rightarrow Iv$ $Z \rightarrow II$ $Z \rightarrow II$	$\begin{array}{c} Z \rightarrow \parallel \\ Z \rightarrow \parallel \\ Z \rightarrow \parallel \end{array}$
	~2.5k evt.	~700 evt.	~140 evt.	~15 evt.	~1.5 evt.

Evt. # based on direct W, Z to e, μ decays Numbers are higher if you add τ 's to e, μ

Different modes populate different N lepton bins

Some cross contamination between N lepton bins exist but is small

N.B. WZ→3I ~100k, ZZ→4I ~10k

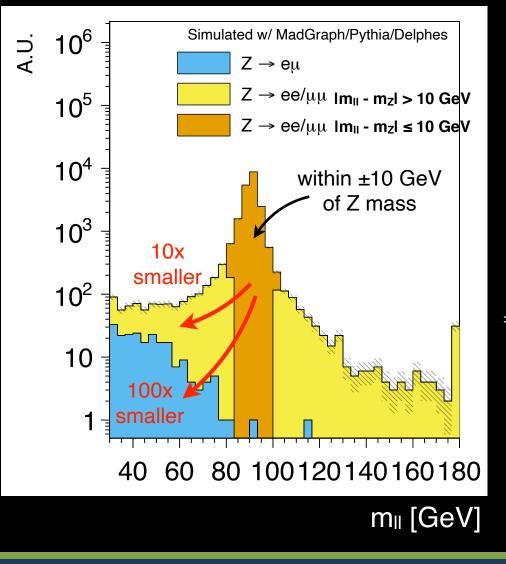
We cover SS, 3, 4, 5, and 6 lepton final states

1	Same-sign	1	1	I	I
	2 leptons	3 leptons	4 leptons	5 leptons	6 leptons
S	₩± → l±v	$\mathcal{W} \rightarrow \mathcal{W}$	$W \rightarrow Iv$	$W \rightarrow Iv$	$Z \rightarrow II$
Signals	$V \neq \to I \neq V$	$V \rightarrow I v$	$W \rightarrow Iv$	$Z \rightarrow II$	$Z \rightarrow II$
Sig	$M^{\mp} \rightarrow qq$	$V \rightarrow I v$	$Z \rightarrow II$	$Z \rightarrow II$	$Z \rightarrow II$
nt	lost				
nina <gs.< td=""><td>$WZ \rightarrow I \pm v I \pm I \mp$</td><td>$WZ \rightarrow IvII$</td><td><i>ZZ</i> → <i>I</i>///</td><td>$ZZ \rightarrow IIII$</td><td>$ZZ \rightarrow IIII$</td></gs.<>	$WZ \rightarrow I \pm v I \pm I \mp$	$WZ \rightarrow IvII$	<i>ZZ</i> → <i>I</i> ///	$ZZ \rightarrow IIII$	$ZZ \rightarrow IIII$
Dominant Bkgs.	$t\bar{t} \rightarrow bb + l + X$ $ \downarrow fake l$	$\begin{array}{c} t\bar{t} \rightarrow bb + ll + X \\ & \downarrow \text{fake } l \end{array}$	$ttZ \rightarrow IIII + bbX$	+ fake lep	+ 2 fake lep

N.B. WZ \rightarrow 3l ~100k, ZZ \rightarrow 4l ~10k

Once separated by N leptons dominant bkg. source becomes apparent

	Same-sign	2 lontono	1 Jontono	Flootopo	Glantana
	2 leptons	3 leptons	4 leptons	5 leptons	6 leptons
als	$VV^{\pm} \rightarrow I^{\pm}V$	$\mathcal{W} \rightarrow \mathcal{I}\mathcal{V}$	$\mathcal{W} \rightarrow \mathcal{W}$	$\mathcal{W} \rightarrow \mathcal{W}$	$Z \rightarrow II$
Jna	$V \not \to \not = v$	$W \rightarrow Iv$	$\mathcal{W} \rightarrow \mathcal{W}$	$Z \rightarrow II$	$Z \rightarrow II$
Signals	$M^{\mp} \rightarrow qq$	$V \rightarrow I v$	$Z \rightarrow II$	$Z \rightarrow II$	$Z \rightarrow II$
Dominant Bkgs.	$VZ \rightarrow I^{\pm}VI^{\pm}$ $\bar{t}\bar{t} \rightarrow bb + I + X$ $\downarrow fake I$				$\frac{ZZ}{Z} \rightarrow IIII$ + 2 fake lep


N.B. WZ \rightarrow 3I \sim 100k, ZZ \rightarrow 4I \sim 10k Selection on flavor and b tag will further reduce bkgs.

Once separated by N leptons dominant bkg. source becomes apparent

Exploiting Z → II features

dilepton invariant mass of $Z \rightarrow II$ decay

If one selects $Im_{\parallel} - m_Z I > 10 \text{ GeV}$ of $ee/\mu\mu$ final state Z is reduced by an order of magnitude

If one selects $e\mu$ final state, Z is reduced by 2 orders of magnitude (e, μ from τ are soft)

 $\Rightarrow ZZ \text{ suppressed in 4 leptons: } ee/\mu\mu + e\mu$ $WZ \text{ suppressed in } e^{\pm}\mu^{\mp}e^{\pm}$ \uparrow 0 "SFOS"(Zero same-flavor opposite sign pair)

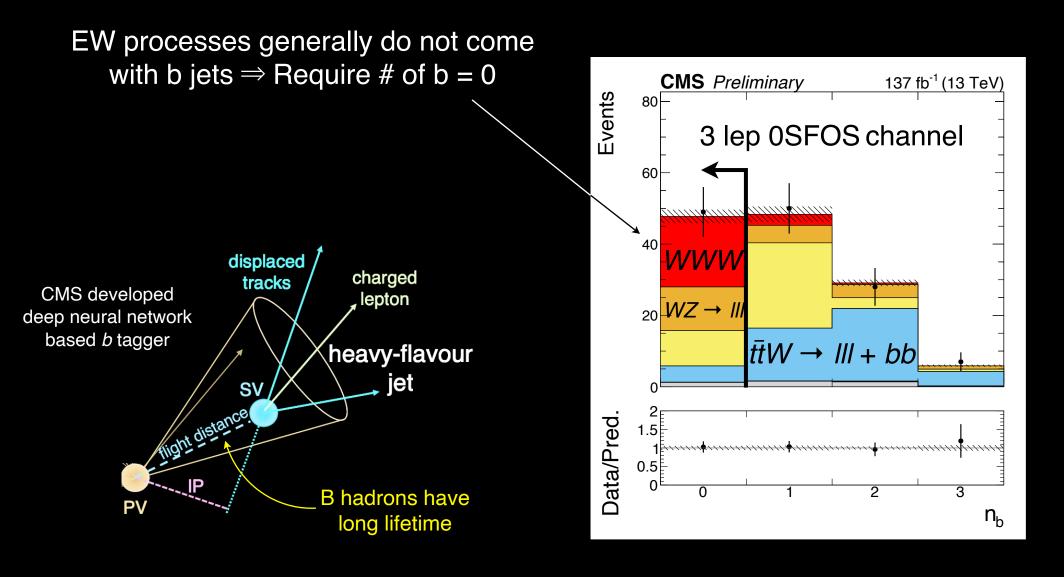
Z decays predominantly to $ee/\mu\mu \Rightarrow$ select away from $Z \rightarrow ee/\mu\mu$

Splitting signal regions by lepton flavors

	Same-sign 2 leptons	3 leptons	4 leptons	5 leptons	6 leptons
Signals	$ \begin{array}{c} \mathcal{W}^{\pm} \rightarrow \ l^{\pm} \mathcal{V} \\ \mathcal{W}^{\pm} \rightarrow \ l^{\pm} \mathcal{V} \\ \mathcal{W}^{\mp} \rightarrow \ qq \end{array} $	$ \begin{array}{c} \mathcal{W} \rightarrow \mathcal{I} \mathcal{V} \\ \mathcal{W} \rightarrow \mathcal{I} \mathcal{V} \\ \mathcal{W} \rightarrow \mathcal{I} \mathcal{V} \end{array} $	$W \rightarrow Iv$ $W \rightarrow Iv$ $Z \rightarrow II$	$V \rightarrow Iv$ $Z \rightarrow II$ $Z \rightarrow II$	$\begin{array}{c} Z \rightarrow \parallel \\ Z \rightarrow \parallel \\ Z \rightarrow \parallel \end{array}$
	Split by ee/eµ/µµ	Split by # of SFOS	tag Z→ll then split WW→ee/µµ		enough
	N.B. μ is cleaner than e	e.g. 0: e±µ∓e± 1: e±e∓µ± 2: e±e∓e±	v. WW→eμ		le bin
	3 categories*		2 categories*	1 category	1 category
	* marked ones will be further split				

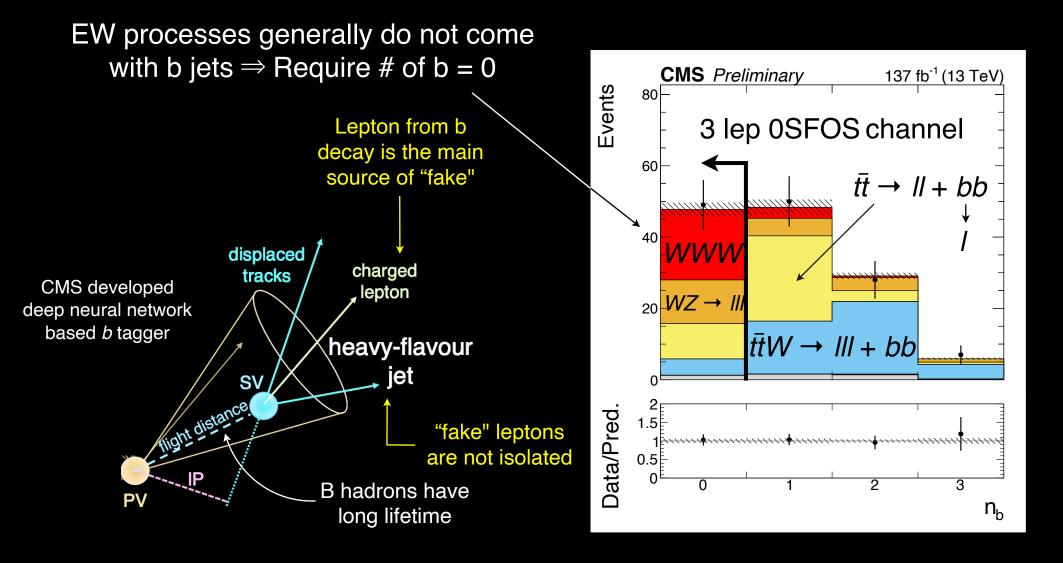
Each N lepton analyses are further split by flavors

4


- 1. Organize analyses by "clean" leptons (likely) from W / Z
 - N leptons in the event
 - Flavor of the leptons
- 2. Reject events with b jets

Smart humans and smart machines (Both cut / BDT)

- 3. Additional background suppression through smart choices
- 4. Reliably estimate the size of residual backgrounds
- 5. Observe VVV!


Rejecting events with b jets

Signals do not have *b* jets

Added benefit of rejecting events with b

Signals do not have *b* jets

Chang

UCSD

5 steps to VVV observation

- 1. Organize analyses by "clean" leptons (likely) from W / Z
 - N leptons in the event
 - Flavor of the leptons
- 2. Reject events with b jets

Smart humans and smart machines (Both cut / BDT)

- 3. Additional background suppression through smart choices
- 4. Reliably estimate the size of residual backgrounds
- 5. Observe VVV

Event selections

same-sign selection

Three leptons selection

Variable		1:			1 100000	
	m_{ij} -in and m_{ij} -out	1j	Variable	0 SFOS	1 and 2 SFOS	
Trigger	Signal triggers, ta		Trigger	Signal trigg	Signal triggers, tab. 3.2	
Signal leptons	Exactly 2 tight SS leptons w	ith $p_{\rm T} > 25 {\rm GeV}$		3 tight leptons with		
Additional leptons	No additional very lo	ose lepton	Signal leptons	$p_{\rm T} > 25/25/25 {\rm GeV}$	0	
Isolated tracks	No additional isolate	ed tracks				
Jets	\geq 2 jets	1 jet	Additional leptons	No additional ve	<i>y</i> 1	
b-tagging	no b-tagged jets and soft b-tag objects		m _{SFOS}	$m_{\rm SFOS}$ > 20 GeV and $ m $	$ m_{\rm SFOS} - m_Z > 20 { m GeV}$	
$m_{\ell\ell}$	>20 GeV		$m_{\ell\ell\ell}$	$ m_{\ell\ell\ell}-m_Z >10{ m GeV}$		
$m_{\ell\ell}$	$ m_{\ell\ell}-m_Z >20{\rm GeV}$	' if $e^{\pm}e^{\pm}$	SF lepton mass	>20 GeV	—	
$p_{\mathrm{T}}^{\mathrm{miss}}$	>45 GeV		Dielectron mass	$ m_{\rm ee} - m_Z > 20 {\rm GeV}$	_	
$m_{\rm JJ}$ (leading jets)	<500 GeV	—	Jets	≤ 1 jet	0 jets	
$\Delta \eta_{ m JJ}$ (leading jets)	<2.5	—	•	No b-tagged jets an	,	
	$65 < m_{ii} < 95 \text{GeV}$ or		b-tagging	no b-tagged jets all	0,	
m_{jj} (closest ΔR)	$ m_{\rm ij} - 80{\rm GeV} \ge 15{\rm GeV}$	—	$\Delta \phi \left(ec{p}_{\mathrm{T}}(\ell \ell \ell), ec{p}_{\mathrm{T}}^{\mathrm{miss}} ight)$	—	>2.5	
$\Delta R_{\ell_i}^{\min}$	·)) · · —	<1.5	$p_{\mathrm{T}}(\ell\ell\ell)$	—	$>50\mathrm{GeV}$	
max	>90 GeV if not $\mu^{\pm}\mu^{\pm}$	>90 GeV	$m_{\rm T}^{\rm 3rd}$ (1 SFOS) or $m_{\rm T}^{\rm max}$ (2 SFOS)		>90 GeV	

Four leptons selection

	-	
Variable	$e\mu$ category	$ee/\mu\mu$ category
Preselection	Sele	ctions in Table 20
W candidate lepton flavors	eµ	ee/µµ
$m_{\ell\ell}$	Separated into 4 bins in $(0, 40, 60, 100, \infty)$	$ m_{\ell\ell}-m_Z >10{ m GeV}$
m_{T2}	$m_{ m T2} > 25{ m GeV}$ (for $m_{\ell\ell} > 100{ m GeV}$)	
		No $p_{\mathrm{T,}4\ell}$ cuts and $p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$ (Bin A)
$p_{\mathrm{T,}4\ell}$ and $p_{\mathrm{T}}^{\mathrm{miss}}$		$p_{\mathrm{T,4\ell}} > 70\mathrm{GeV}$ and $70 < p_\mathrm{T}^\mathrm{miss} < 120\mathrm{GeV}$ (Bin B)
		$40 < p_{\mathrm{T,}4\ell} <$ 70 GeV and 70 $< p_{\mathrm{T}}^{\mathrm{miss}} <$ 120 GeV (Bin C)

5/6L will be explained later

This is the full selections but I will not go in details for every single one

Event selections

same-sign selection

Variable	m_{ij} -in and m_{ij} -out	1j	Variable
Trigger	Signal triggers,	tab. 3.2	Trigger
Signal leptons	Exactly 2 tight SS leptons	with $p_{\rm T} > 25 {\rm GeV}$	88
Additional leptons	No additional very l	oose lepton	Signal l
Isolated tracks	No additional isola	ated tracks	
Jets	\geq 2 jets	1 jet	Additic
1 · · ·	1 . 1 1	(+1 · 1 · ·	$m_{\rm SFOS}$
Sp	it by N leptc	ons	$m_{\ell\ell\ell}$
			SF lepto
and requ	uiring "Tight"	leptons	Dielect
			Jets
$\Delta \eta_{ m JJ}$ (leading jets)	<2.5	—	b-taggi
m_{ii} (closest ΔR)	$65 < m_{jj} < 95 \text{GeV}$ or	_	$\Delta \phi (\vec{p}_{\rm T})$
<i>)</i> /	$ m_{\rm jj}-80{ m GeV} \geq 15{ m GeV}$. (. =
$\Delta R_{\ell j}^{\min}$	—	<1.5	$p_{\rm T}(\ell\ell\ell)$
$m_{\mathrm{T}}^{\mathrm{max}}$	>90 GeV if not $\mu^{\pm}\mu^{\pm}$	>90 GeV	$m_{\rm T}^{\rm 3rd}$ (13)

Variable	0	SFOS	1 and 2 SFOS
Trigger		Signal trig	gers, tab. 3.2
Signal leptons	0	1	th charge sum = $\pm 1e$ $p_{\rm T} > 25/20/20 {\rm GeV}$
Additional leptons	, 1		very loose lepton
m _{SFOS}	$m_{ m SFOS} > 20{ m GeV}$ and $ m_{ m SFOS} - m_Z > 20{ m GeV}$		
$m_{\ell\ell\ell}$		-m	$_{\rm Z} >10{\rm GeV}$
SF lepton ma Split by C	chann	els	—
Dielectron mass		z > 20 GeV	, <u> </u>
Jets	\leq	1 jet	0 jets
b-tagging	No b-	tagged jets a	nd soft b-tag objects
$\Delta \phi \left(ec{p}_{\mathrm{T}}(\ell \ell \ell), ec{p}_{\mathrm{T}}^{\mathrm{miss}} ight)$		_	>2.5
$p_{\mathrm{T}}(\ell\ell\ell)$		_	>50 GeV
$m_{\rm T}^{\rm 3rd}$ (1 SFOS) or $m_{\rm T}^{\rm max}$ (2 SFOS)		_	>90 GeV

Three leptons selection

Four leptons selection

Variable	$e\mu$ category	$ee/\mu\mu$ category	
Preselection	Sele	ctions in Table 20	
W candidate lepton flavors	eµ	ee/µµ	
$m_{\ell\ell}$	Separated into 4 bins in $(0, 40, 60, 100, \infty)$	$ m_{\ell\ell}-m_Z >10{ m GeV}$	
m_{T2}	$m_{ m T2} > 25 { m GeV}$ (for $m_{\ell\ell} > 100 { m GeV}$)		
		No $p_{\mathrm{T,}4\ell}$ cuts and $p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$ (Bin A)	
$p_{\mathrm{T,}4\ell}$ and $p_{\mathrm{T}}^{\mathrm{miss}}$		$p_{\mathrm{T,4\ell}} >$ 70 GeV and 70 $< p_\mathrm{T}^\mathrm{miss} <$ 120 GeV (Bin B)	
		$40 < p_{\mathrm{T,}4\ell} <$ 70 GeV and 70 $< p_{\mathrm{T}}^{\mathrm{miss}} <$ 120 GeV (Bin C)	

5/6L will be explained later

But already you can notice a few things

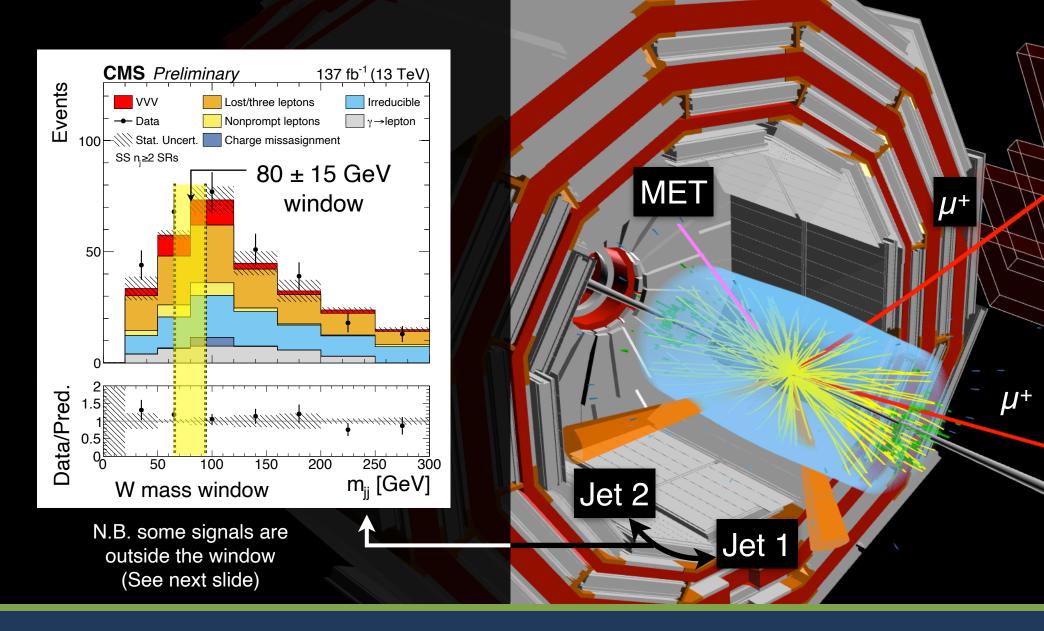
Event selections

same-sign selection

Three leptons selection

Variable	m_{ii} -in and m_{ii} -out	1j	Variable	0 SFOS 1	and 2 SFOS
Trigger	Signal triggers, ta	· · ·	Trigger	Cignel twiceous to	
Signal leptons	Exactly 2 tight SS leptons w	ith $p_{\rm T} > 25 {\rm GeV}$	1116601	 Split by number of jet 	S =1e
Additional leptons	No additional very lo	ose lepton	Signal leptons		0 GeV
Isolated tracks	No additional isolate	ed tracks	A 1.1:0: 1.1	• Dijet inverient messe	
Jets	\geq 2 jets	1 jet	Additional leptons	 Dijet invariant mass: i 	
b-tagging	no b-tagged jets and soft	b-tag objects	$m_{ m SFOS}$.0 GeV
$m_{\ell\ell}$	>20 GeV		$m_{\ell\ell\ell}$	 Transverse mass: m_T 	
$m_{\ell\ell}$	$ m_{\ell\ell}-m_Z >20{\rm GeV}$	' if $e^{\pm}e^{\pm}$	SF lepton mass		
$p_{\mathrm{T}}^{\mathrm{miss}}$	>45 GeV		Dielectron mass	 "S"transverse mass: r 	П Т2
<i>m</i> _{JJ} (leading jets)	<500 GeV	—	Jets		
$\Delta \eta_{ m IJ}$ (leading jets)	<2.5	—	-	 Missing transverse er 	Argy octs
m_{ii} (closest ΔR)	$65 < m_{jj} < 95 { m GeV}$ or	_	$\Delta \phi \left(\vec{p}_{\mathrm{T}}(\ell \ell \ell), \vec{p}_{\mathrm{T}}^{\mathrm{miss}} \right)$		
<u>)</u>	$ m_{\rm ii} - 80{ m GeV} \ge 15{ m GeV}$			—	>2.5
$\Delta R_{\ell \mathrm{j}}^{\mathrm{min}}$	—	<1.5	$p_{\rm T}(\ell\ell\ell)$		>50 GeV
$m_{\rm T}^{\rm max}$	>90 GeV if not $\mu^{\pm}\mu^{\pm}$	>90 GeV	$m_{\rm T}^{\rm 3rd}$ (1 SFOS) or $m_{\rm T}^{\rm n}$	Γ (2 SFOS) —	>90 GeV

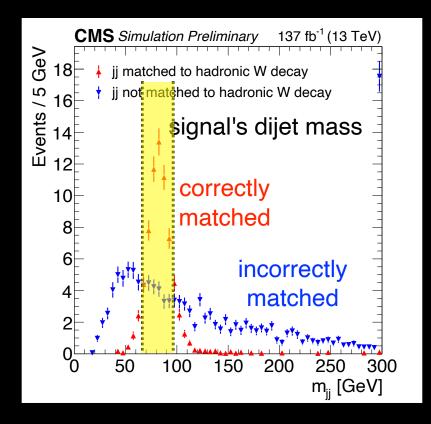
Four leptons selection

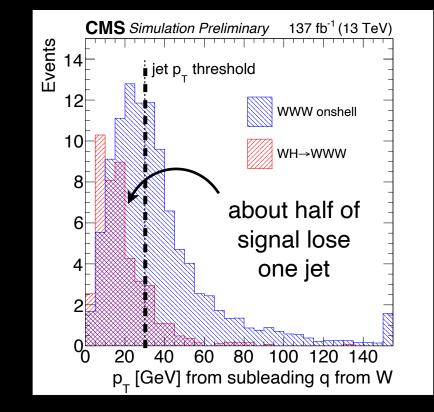

Variable	$e\mu$ category	$ee/\mu\mu$ category
Preselection	Sele	ections in Table 20
W candidate lepton flavors	eµ	ee/µµ
$m_{\ell\ell}$	Separated into 4 bins in $(0, 40, 60, 100, \infty)$	$ m_{\ell\ell}-m_Z >10{ m GeV}$
m_{T2}	$m_{ m T2} > 25 { m GeV}$ (for $m_{\ell\ell} > 100 { m GeV}$)	
		No $p_{\mathrm{T,}4\ell}$ cuts and $p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$ (Bin A)
$p_{\mathrm{T,}4\ell}$ and $p_{\mathrm{T}}^{\mathrm{miss}}$		$p_{\mathrm{T,4\ell}} >$ 70 GeV and 70 $< p_{\mathrm{T}}^{\mathrm{miss}} <$ 120 GeV (Bin B)
		$40 < p_{\mathrm{T,4}\ell} < 70\mathrm{GeV}$ and $70 < p_\mathrm{T}^\mathrm{miss} < 120\mathrm{GeV}$ (Bin C)

5/6L will be explained later

But I will highlight these 5 points in the coming slides

Reconstruct W \rightarrow **qq in WWW** \rightarrow I[±]I[±]qq





dijet invariant mass for signal peaks around W mass

Difficulties in jet final states

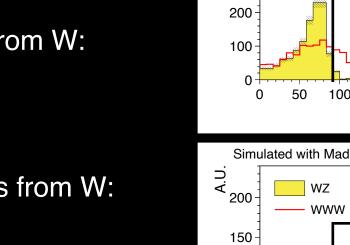
Difficult to match $W \rightarrow qq$ \Rightarrow Select off-W-mass peak region Difficult to reconstruct both jets \Rightarrow Select 1 jet (1J) events

2 additional categories (m_{jj} -in, m_{jj} -out, 1J) each split by $ee/e\mu/\mu\mu$ \Rightarrow Total of 9 signal regions for same-sign analysis

We cover wide range of possible jet final states to maximize sensitivity

Kinematic endpoints for 3 leptons

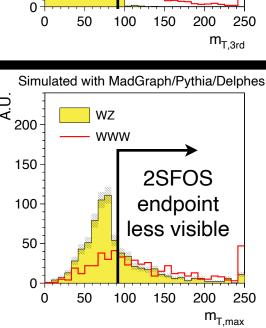
Separated by *#* of SFOS pairs:


- 0 SFOS (low bkg.)
- 1 SFOS
- 2 SFOS
 0SFOS is by far the cleanest

For 1SFOS it is clear which one is from W:

 $\frac{e^{\pm}e^{\mp}}{Z} \frac{\mu^{\pm}}{W} \frac{\mu^{\pm}\mu^{\mp}}{Z} \frac{e^{\pm}}{W}$

Take max m_T computed from either leptons


 \Rightarrow 3 signal regions for 3 leptons

 $m_{\rm T}^{\rm 3rd}$ (1 SFOS) or $m_{\rm T}^{\rm max}$ (2 SFOS)

400

300

Simulated with MadGraph/Pythia/Delphes

1SFOS

endpoint

visible

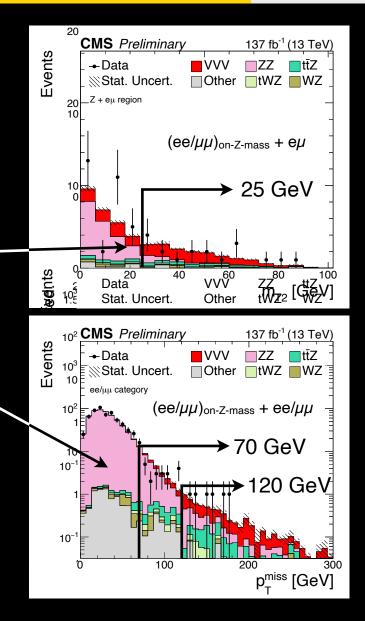
WZ

WWW

By flavor, W lepton can be identified and kinematic endpoints can be used

>90 GeV

Kinematic endpoints for 4 leptons

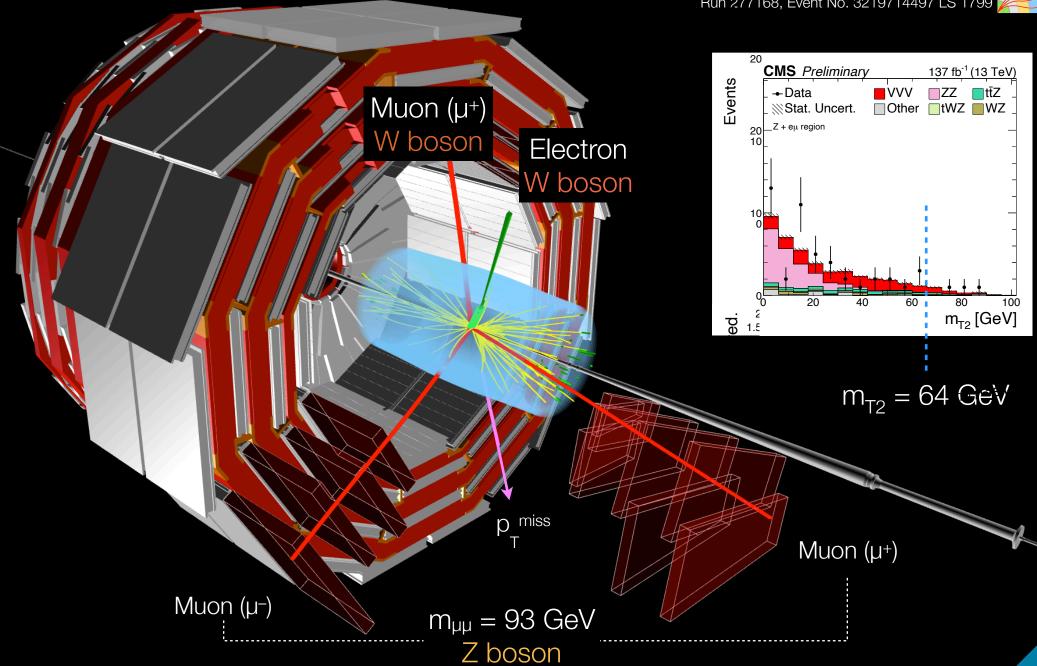

Events are separated into 2 categories by flavor:

- " $e\mu$ channel": $(ee/\mu\mu)_{on-Z-mass} + e\mu$ (low bkg.)
- "ee/ $\mu\mu$ channel": (ee/ $\mu\mu$)_{on-Z-mass} + ee/ $\mu\mu$

eµ channel utilizes m_{T2} variable, which is a generalization of m_T for multiple missing particles. m_{T2} is sensitive to the end points of m_T from ZZ→IITT

ZZ bkg in $ee/\mu\mu$ have low missing energy

Combine these and a few more kinematic variables to form total of 7 signal regions for 4 lepton analysis

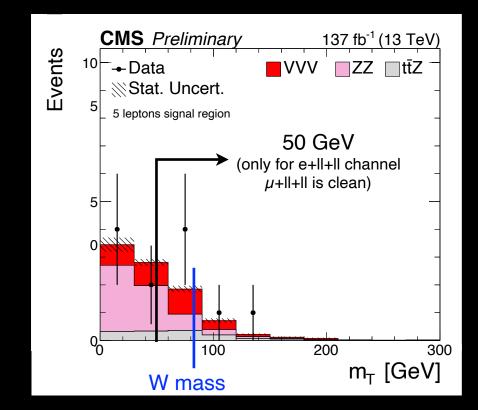

Exploit differences between $Z \rightarrow II v$. WW $\rightarrow IvIv$

GeVi

4 lepton event

CMS experiment at the LHC, CERN Data recorded: 2016-Jul-23 08:13:27.898048 GMT Run 277168, Event No. 3219714497 LS 1799

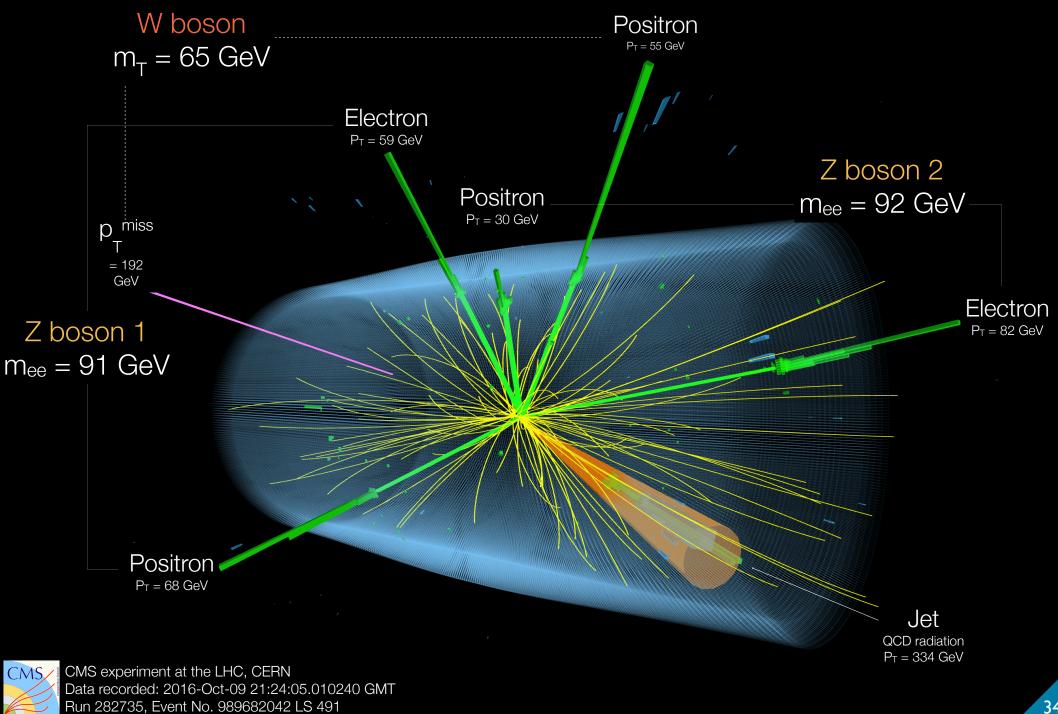
5 leptons



Require the 5 lepton events to contain two SFOS pair consistent with Z mass

The dominant background is ZZ → IIII plus a fake lepton

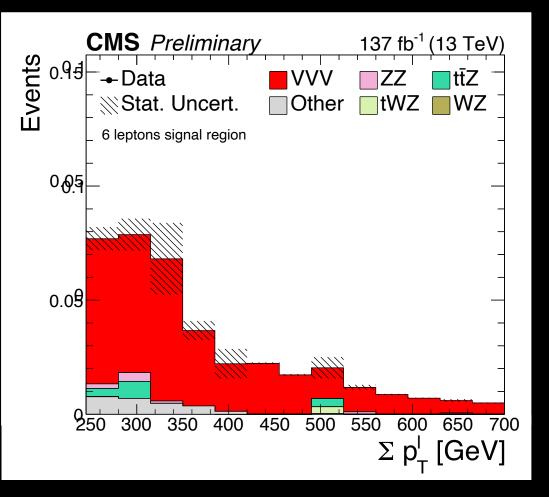
The fake lepton has low transverse mass while the signal's W has transverse mass peaking at W mass


Cut-and-count of one bin

Exploit the features of $W \rightarrow Iv$ decay

5 lepton event

6 leptons



Select at least 6 leptons

Require $\Sigma P_T \ge 250 \text{ GeV}$

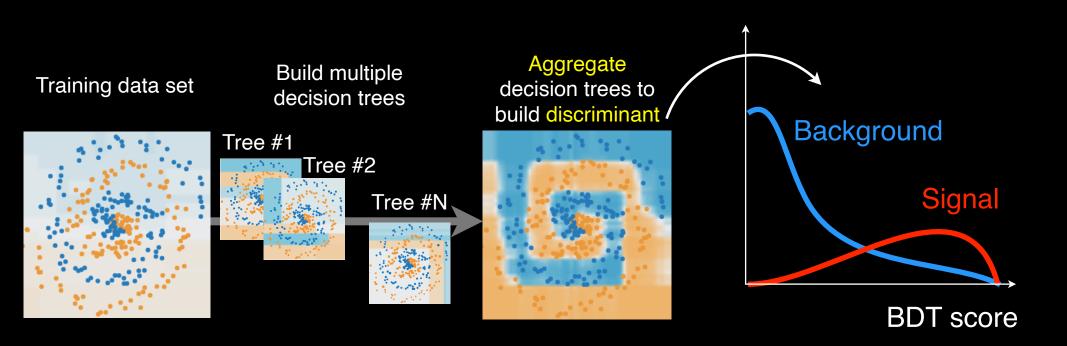
Less than 1 event expected

Very clean channel

Not enough stats, so search inclusively

5 steps to VVV observation

- 1. Organize analyses by "clean" leptons (likely) from W / Z
 - N leptons in the event
 - Flavor of the leptons
 - 2. Reject events with b jets


Smart humans and smart machines (Both cut / BDT)

- 3. Additional background suppression through smart choices
- 4. Reliably estimate the size of residual backgrounds
- 5. Observe VVV!

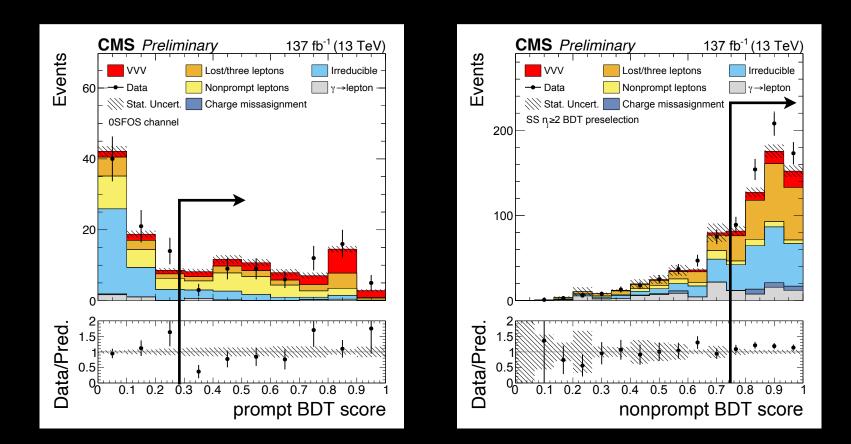
Boosted decision tree

Boosted decision tree is widely used in many analyses at the LHC

https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

Train dedicated boosted decision trees to maximize sensitivity

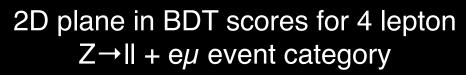
Overview of BDT



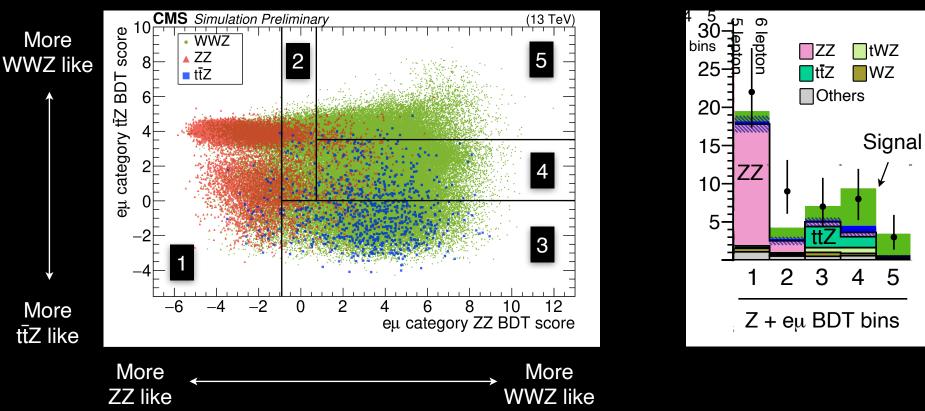
	Same-sign 2 leptons	3 leptons	4 leptons	5 leptons	6 leptons
Signals	$ \begin{array}{c} \mathcal{W}^{\pm} \rightarrow \ ^{\pm} \mathcal{V} \\ \mathcal{W}^{\pm} \rightarrow \ ^{\pm} \mathcal{V} \\ \mathcal{W}^{\mp} \rightarrow \ qq \end{array} $	$ \begin{array}{c} \mathcal{W} \to \mathcal{I}_{\mathcal{V}} \\ \mathcal{W} \to \mathcal{I}_{\mathcal{V}} \\ \mathcal{W} \to \mathcal{I}_{\mathcal{V}} \end{array} $	$ \begin{array}{c} \mathcal{W} \to \mathcal{I} \mathcal{V} \\ \mathcal{W} \to \mathcal{I} \mathcal{V} \\ \mathcal{Z} \to \mathcal{I} \end{array} $	$W \rightarrow Iv$ $Z \rightarrow II$ $Z \rightarrow II$	$\begin{array}{c} Z \rightarrow \parallel \\ Z \rightarrow \parallel \\ Z \rightarrow \parallel \end{array}$
Dominant Bkgs.	$WZ \rightarrow f^{\pm}vf^{\pm}$			$ZZ \rightarrow IIII$	
Do	$ \overline{tt} \to bb + I + X $	<i>t̄t → bb</i> + // + X └→ fake /	<i>ttZ → IIII</i> + bbX	+ таке іер	+ 2 fake lep
"	Prompt" bkgs.	"Fake" bkgs.	t <mark>ī</mark> Z bkg. ZZ bkg.	5/6	DT trained for leptons (not ough stats)

Train different BDTs against different backgrounds

WWW BDTs: SS / 3 leptons


Maintained same categorizations but cut on BDT to maximize sensitivity

Total number of bins stayed same (9 for same-sign, 3 for 3 leptons)


Cut on each BDT scores to create a high sensitivity bin

WWZ $\beta D T s for 4 lepto s analysis$

5 bins are created from 2D planes

**For $Z \rightarrow II + ee/\mu\mu$ event category, 2 bins are created (not shown)

Created multiple bipstimeDifsted maximize serisitivity epton

40

5 steps to VVV observation

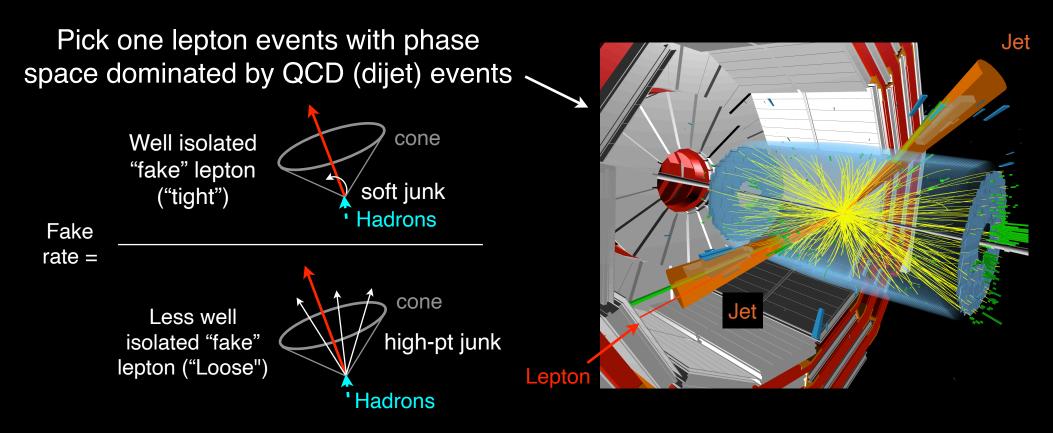
1. Organize analyses by "clean" leptons (likely) from W / Z

- N leptons in the event
- Flavor of the leptons
- 2. Reject events with b jets

Smart humans and smart machines (Both cut / BDT)

- 3. Additional background suppression through smart choices
- 4. Reliably estimate the size of residual backgrounds
- 5. Observe VVV!

Background estimations


	Same-sign 2 leptons	3 leptons	4 leptons	5 leptons	6 leptons
Dominant Bkgs.	$\frac{VZ}{VZ} \rightarrow I^{\pm}VI^{\pm}$ $\bar{t}\bar{t} \rightarrow bb + I + X$ $\downarrow fake I$				$\frac{ZZ}{Z} \rightarrow IIII$ + 2 fake lep

Types of backgrounds	Suppressed via	Bkg. estimation	
Fake leptons	Isolation	Reliably extrapolate across isolation	
Backgrounds with <i>b</i> jets	b tagging	Reliably extrapolate across b tagging	
Lost leptons	Removing events with 3rd lepton	Reliably extrapolate across N leptons	
Irreducible	Smart flavor choices	Reliably extrapolate across flavor	

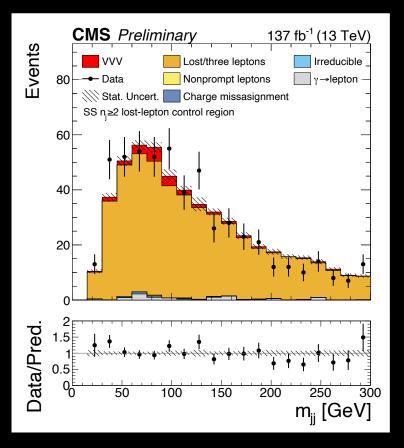
Reliably extrapolate across the method used to suppress background to estimate the size of residual backgrounds in signal region 42

Fake lepton backgrounds

Fake rate is then applied to signal like region with "Loose"-ly identified leptons "Side band" in isolation

Underlying effects (P_T of quarks) that govern fake rate are not measurable \Rightarrow Source of systematics (~30%)

Estimate fake lepton by measuring fake rate from QCD events



Lepton finding efficiency is well modeled by MC (factors: P_T, η, lepton ID)

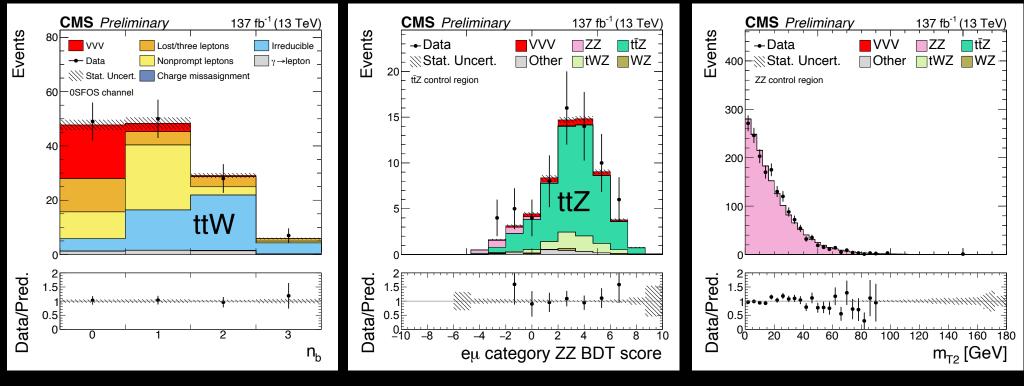
Construct a control region with 3 leptons and extrapolate across 3 lepton \rightarrow 2 leptons

Experimental systematics assigned

Control region data statistics dominates uncertainty (20%)

Estimate lost lepton background by extrapolating across # of leptons

Backgrounds with *b* **jets / irreducible**



Devise control regions and extrapolate to signal region

N_b in 3 lepton

4 lepton BDT score Z→II + $e\mu$ + *b* jets

4 lepton m_{T2} Z \rightarrow II + ee/ $\mu\mu$

Extrapolate across N_b tag (~10%)

Extrapolate across flavor (uncertainty ~5%)

Extrapolate from control region to estimate backgrounds

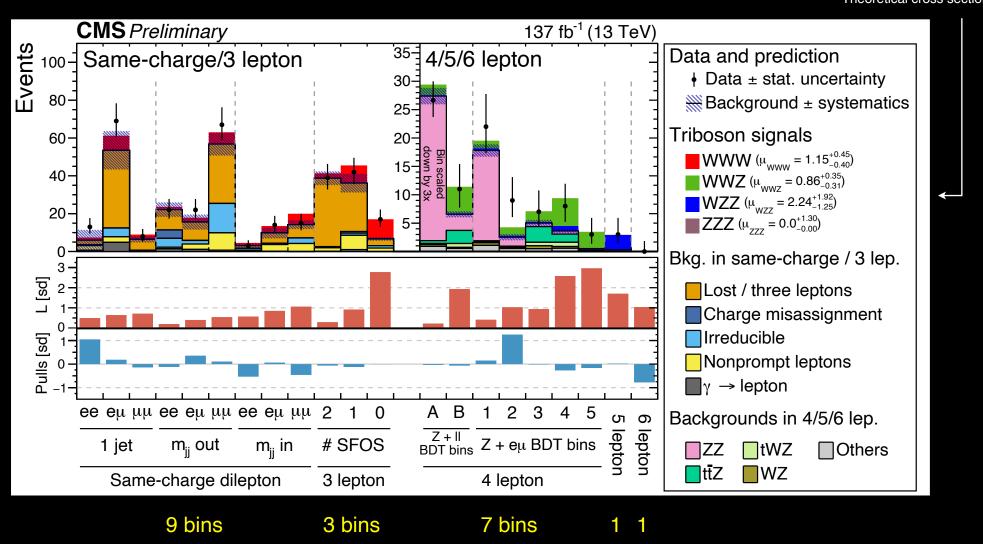
Putting it all together

	Same-sign 2 leptons	3 leptons	4 leptons	5 leptons	6 leptons
Signals	$ \begin{array}{c} \mathcal{W}^{\pm} \rightarrow \ ^{\pm} \mathcal{V} \\ \mathcal{W}^{\pm} \rightarrow \ ^{\pm} \mathcal{V} \\ \mathcal{W}^{\mp} \rightarrow \ qq \end{array} $	$ \begin{array}{c} \mathcal{W} \to \mathcal{I}_{\mathcal{V}} \\ \mathcal{W} \to \mathcal{I}_{\mathcal{V}} \\ \mathcal{W} \to \mathcal{I}_{\mathcal{V}} \end{array} $	$W \rightarrow Iv$ $W \rightarrow Iv$ $Z \rightarrow II$	$ \begin{array}{c} W \rightarrow Iv \\ Z \rightarrow II \\ Z \rightarrow II \end{array} $	$\begin{array}{c} Z \rightarrow \parallel \\ Z \rightarrow \parallel \\ Z \rightarrow \parallel \end{array}$
Split Flavor	3	3	2	1	1
Channel specific splits	mjj-in mjj-out 1J	_	Split in kinematics or BDT		
Total	9 bins	3 bins	7 bins	1 bin	1 bin

Total of 21 bins

21

- 1. Organize analyses by "clean" leptons (likely) from W / Z
 - N leptons in the event
 - Flavor of the leptons
- 2. Reject events with b jets
- 3. Additional background suppression through smart choices
- 4. Reliably estimate the size of residual backgrounds
- 5. Observe VVV!


Results (BDT-based analysis)

Signal strength $\mu = \frac{1000}{100}$

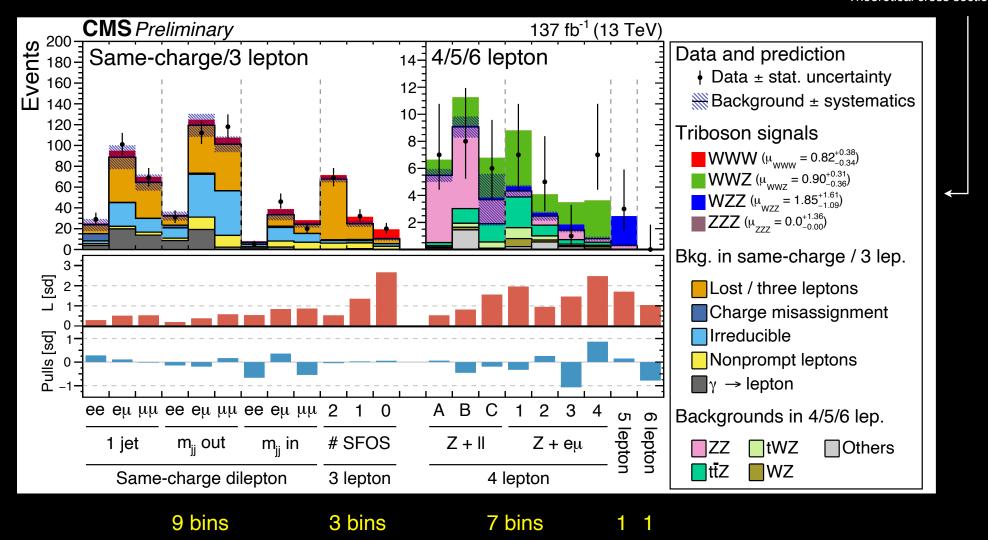
Measured cross section Theoretical cross section

Chang

UCSD

More sensitive bins are generally to the right

BDT-based analysis is more sensitive so this is our main result


Results (Cut-based analysis)

Measured cross section Signal strength $\mu =$

Theoretical cross section

Chang

UCSD

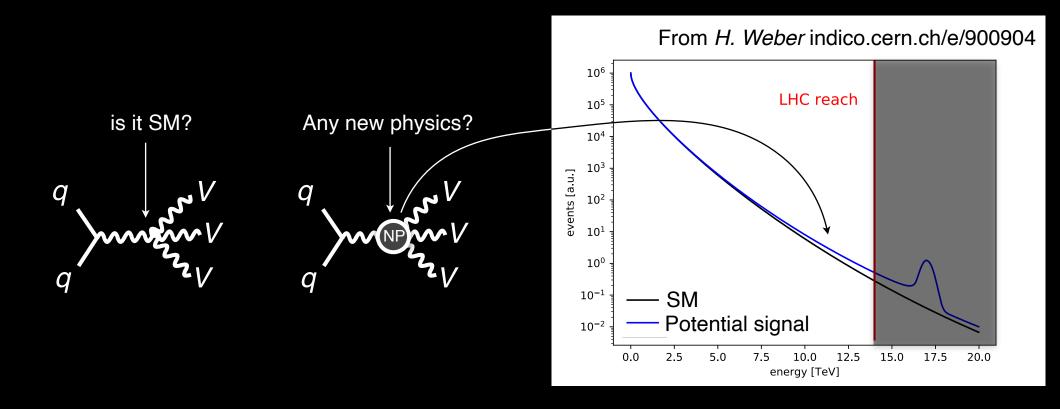
More sensitive bins are generally to the right

Cut-based analysis is also reported for cross check and completeness (also easier to understand by theorists if re-interpreted)

Results

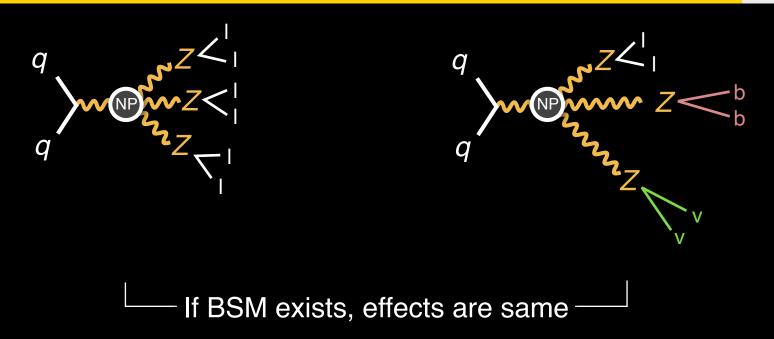
			CMS	Preliminary		137 fb ⁻¹ (13 TeV)
VVV mode	Significance $[\sigma]$	e e me bine d			 BDT-based cut-based 	total stat
WWW	3.3 (3.1)	combined		-0-		1.02 ^{+0.26} +0.21 -0.23 -0.20
WWZ	3.3 (4.1)	www				1.15 ^{+0.45} +0.32 -0.40 -0.30
WZZ	1.7 (0.7)	WWZ		—		0.86 ^{+0.35} +0.32 -0.31 -0.29
ZZZ	0 (0.9)	WZZ			,	- 2.24 ^{+1.92} +1.78 -1.25 -1.24
Combined	5.7 (5.9)	ZZZ			allowed	< 5.4 Stat limited
			0	1	2 3 4	1 5 6 signal strength μ
				SM		
					Magaur	rod orose soction

Signal strength $\mu = \frac{\text{Measured cross section}}{\text{Theoretical cross section}}$


- We have observed production of three massive gauge boson for the first time!
- We also found evidences separately for the WWW and WWZ production.
- The cross sections are compatible with the standard model expectation.

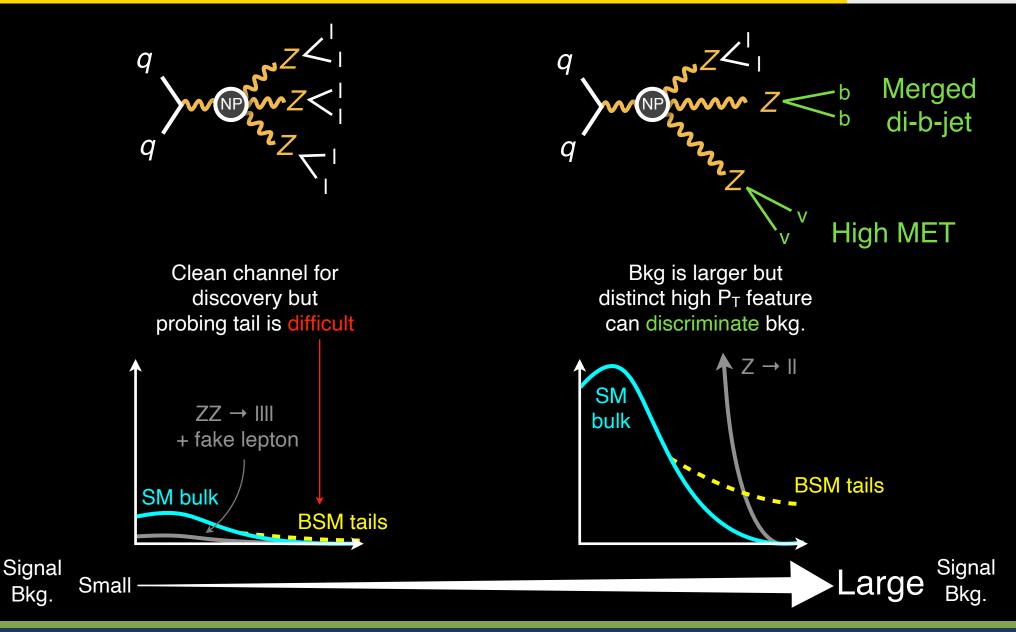
First observation of VVV and evidences for WWW and WWZ productions

Using VVV as a tool


Now that we have established VVV production we can use it to test SM and also search new physics (cf. Four fermion interaction with Fermi constant)

Establishment of VVV production opens up a new physics program

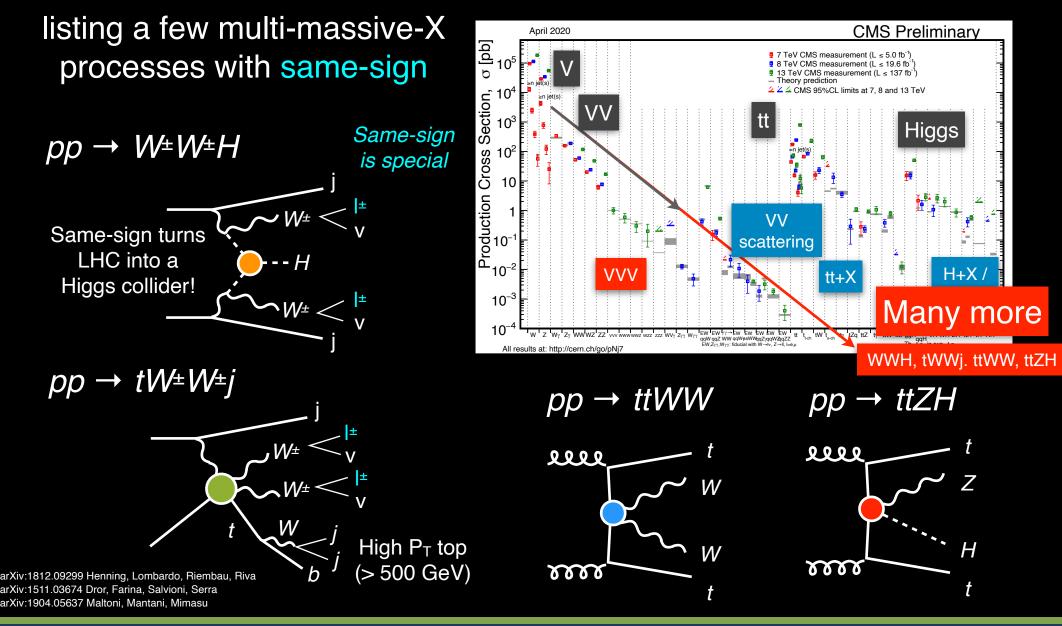
Fully leptonic v. Semi leptonic channel



- Physics of $V \rightarrow ff$ is well understood
- We have now established pp \rightarrow VVV production in "fully" leptonic decay
- Therefore, there ought to be $pp \rightarrow VVV \rightarrow semi-leptonic$
 - \Rightarrow If new physics alters pp \rightarrow VVV, it will alter <u>fully / semi leptonic the same</u>

 $VVV \rightarrow$ semi-leptonic ought to have same physics as $VVV \rightarrow$ fully leptonic

Fully leptonic v. Semi leptonic channel

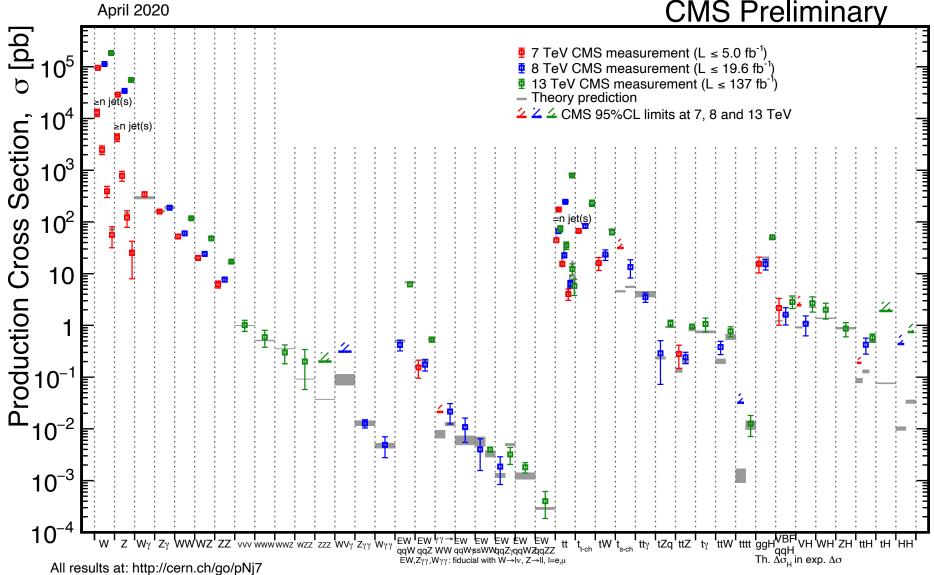


We can probe VVV \rightarrow semi-leptonic for new physics

More multi-massive-X processes for future

There are many more multi-massive-X production to be explored at LHC

- First observation of VVV productions was made by CMS collaboration
- Also found evidences for WWW and WWZ
- first hints for WZZ production and no hints for ZZZ yet
- The measured cross section is compatible with SM
- This establishes VVV process and opens a unique opportunity to test SM
- New physics can be also searched
- In the future, LHC will continue to probe electroweak interactions in various VVV channel
- Also, LHC will have to continue to probe unexplored electroweak productions of massive particles



Backup

Quantities	www	WWZ	WZZ	ZZZ
$\sigma_{pp \rightarrow VVV \text{ non-VH}}$ (fb)	216.0	165.1	55.7	14.0
$\sigma_{\rm VH \to VVV}$ (fb)	293.4	188.9	36.0	23.1
σ_{total} (fb)	509.4	354.0	91.6	37.1
${\cal B}_{VVV ightarrow SS}$ (%)	7.16	-	-	-
${\cal B}_{VVV ightarrow 3\ell}$ (%)	3.46	4.82	6.37	-
${\cal B}_{VVV ightarrow 4\ell}$ (%)	-	1.16	0.81	3.22
${\cal B}_{VVV ightarrow 5\ell}$ (%)	-	-	0.39	-
$\mathcal{B}_{VVV \to 6\ell}$ (%)	-	-	-	0.13
$\sigma_{\text{total}} \times \mathcal{B}_{VVV \rightarrow SS}$ (fb)	36.4	-	-	-
$\sigma_{ ext{total}} imes \mathcal{B}_{VVV ightarrow 3\ell}$ (fb)	17.6	17.1	5.83	-
$\sigma_{ ext{total}} imes \mathcal{B}_{VVV ightarrow 4\ell}$ (fb)	-	4.12	0.74	1.19
$\sigma_{ ext{total}} imes \mathcal{B}_{VVV ightarrow 5\ell}$ (fb)	-	-	0.36	-
$\sigma_{\text{total}} imes \mathcal{B}_{VVV \to 6\ell}$ (fb)	-	-	-	0.05
$\sigma_{\text{total}} imes \mathcal{B}_{VVV ightarrow SS} imes 137 \text{fb}^{-1} (N_{\text{evts}})$	4987	-	-	-
$\sigma_{ m total} imes {\cal B}_{VVV ightarrow 3\ell} imes 137 { m fb}^{-1} \ (N_{ m evts})$	2411	2343	799	-
$\sigma_{ m total} imes {\cal B}_{VVV ightarrow 4\ell} imes 137 { m fb}^{-1} \ (N_{ m evts})$	-	564	101	163
$\sigma_{ m total} imes {\cal B}_{VVV ightarrow 5\ell} imes 137 { m fb}^{-1} \ (N_{ m evts})$	-	-	49.3	-
$\sigma_{\text{total}} imes \mathcal{B}_{VVV \to 6\ell} imes 137 \text{fb}^{-1} (N_{\text{evts}})$	-	-	-	6.85

Features			Selections	
	$SS+{\geq}2j$	SS + 1j	3ℓ	
Triggers	Select event		passing dilepton triggers	
Number of leptons	Select event	s with 2 (3) leptons	passing SS-ID (3 ℓ -ID) for SS (3 ℓ) final states	
Number of leptons	Select ev	ents with 2 (3) lepto	ns passing veto-ID for SS (3 ℓ) final states	
Isolated tracks	No additional isolated tracks		—	
b-tagging	ing no b-tagged		jets and soft b-tag objects	
Jets	\geq 2 jets	1 jet	≤ 1 jet	
$m_{\rm JJ}$ (leading jets)	<	500 GeV	—	
$\Delta \eta_{ m JJ}$ (leading jets)		<2.5	—	
$m_{\ell\ell}$	>	20 GeV	—	
$m_{\ell\ell}$	$ m_{\ell\ell}-m_Z $	$>$ 20 GeV if $e^\pm e^\pm$	—	
$m_{ m SFOS}$	—	—	$m_{ m SFOS} > 20 m GeV$	
$m_{ m SFOS}$	—	—	$ m_{ m SFOS}-m_Z >20{ m GeV}$	
$m_{\ell\ell\ell}$	_	<u> </u>	$ m_{\ell\ell\ell}-m_Z >10{ m GeV}$	

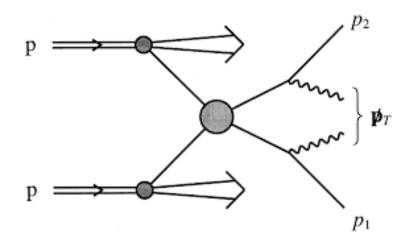
SS selection

Variable	m_{ij} -in and m_{ij} -out	1j	
Trigger	Signal triggers,	tab. 3.2	
Signal leptons	Exactly 2 tight SS leptons	with $p_{\rm T} > 25 { m GeV}$	
Additional leptons	No additional very l	oose lepton	
Isolated tracks	No additional isola	ted tracks	
Jets	\geq 2 jets	1 jet	
b-tagging	no b-tagged jets and soft b-tag objects		
$m_{\ell\ell}$	>20 GeV		
$m_{\ell\ell}$	$ m_{\ell\ell}-m_{ m Z} >20{ m Ge}$	eV if $e^{\pm}e^{\pm}$	
$p_{\mathrm{T}}^{\mathrm{miss}}$	>45 GeV		
$m_{\rm JJ}$ (leading jets)	<500 GeV	—	
$\Delta \eta_{\rm JJ}$ (leading jets)	<2.5	—	
m (closest ΛP)	$65 < m_{ij} < 95 \text{GeV}$ or		
$m_{\rm jj}$ (closest ΔR)	$ m_{\rm jj} - 80{\rm GeV} \ge 15{\rm GeV}$		
$\Delta R_{\ell_{i}}^{\min}$		<1.5	
m_max	>90 GeV if not $\mu^{\pm}\mu^{\pm}$	>90 GeV	

3L selection

Variable	0 SFOS	1 and 2 SFOS	
Trigger	Signal trigg	ers, tab. 3.2	
Signal leptons	3 tight leptons with	charge sum = $\pm 1e$	
orginal reptorts	$p_{\rm T} > 25/25/25{ m GeV}$	$p_{\rm T} > 25/20/20 { m GeV}$	
Additional leptons	No additional v	ery loose lepton	
$m_{ m SFOS}$	$m_{\rm SFOS} > 20 { m GeV}$ and $ m_{ m SFO} $		
$m_{\ell\ell\ell}$	$ m_{\ell\ell\ell} - m_Z > 10 \mathrm{GeV}$		
SF lepton mass	>20 GeV	_	
Dielectron mass	$ m_{\rm ee} - m_Z > 20{\rm GeV}$	_	
Jets	≤ 1 jet	0 jets	
b-tagging	No b-tagged jets an	d soft b-tag objects	
$\Delta \phi \left(ec{p}_{\mathrm{T}}(\ell \ell \ell), ec{p}_{\mathrm{T}}^{\mathrm{miss}} ight)$	—	>2.5	
$p_{\mathrm{T}}(\ell\ell\ell)$		$>50\mathrm{GeV}$	
$m_{\rm T}^{\rm 3rd}$ (1 SFOS) or $m_{\rm T}^{\rm max}$ (2 SFOS)		>90 GeV	

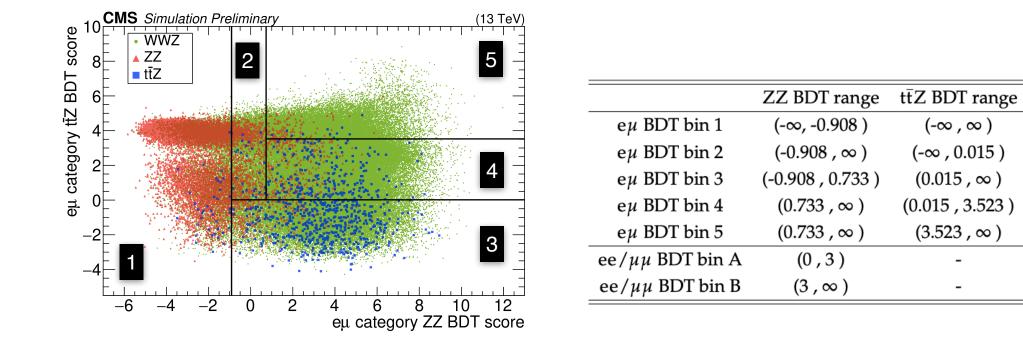
Features	Selections		
Number of leptons	Select events with 4 leptons passing common veto-ID		
Triggers	Select events passing dilepton triggers		
7 loptop	Find opposite charge lepton pairs, passing ZID, closest to m_Z		
Z lepton	Require Z leptons to have $p_{\rm T} > 25, 15$ GeV		
W/lonton	Require that leftover leptons are opposite charge and pass WID		
W lepton	Require W leptons to have $p_{\rm T} > 25, 15$ GeV		
Low mass resonances	Require any opposite charge pair invariant mass to be greater than 12 GeV		
b-tagged jets	no b-tagged jet		
Z mass window	Require invariant mass of the Z leptons to be within 10 GeV of Z boson mass		

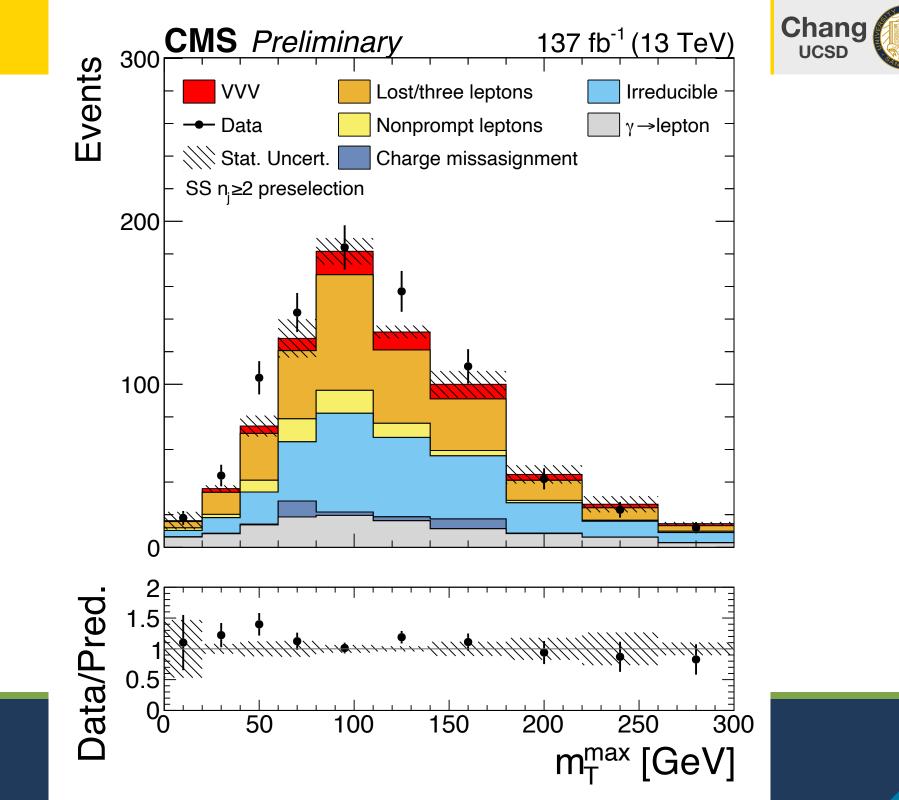


	-	· · · -
Variable	$e\mu$ category	$ee/\mu\mu$ category
Preselection	Sele	ctions in Table 20
W candidate lepton flavors	eµ	ee/µµ
$m_{\ell\ell}$	Separated into 4 bins in $(0, 40, 60, 100, \infty)$	$ m_{\ell\ell}-m_Z >10{ m GeV}$
m_{T2}	$m_{ m T2}>25{ m GeV}$ (for $m_{\ell\ell}>100{ m GeV}$)	
		No $p_{\mathrm{T,}4\ell}$ cuts and $p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$ (Bin A)
$p_{\mathrm{T,}4\ell}$ and $p_{\mathrm{T}}^{\mathrm{miss}}$		$p_{\mathrm{T,4\ell}} >$ 70 GeV and 70 $< p_{\mathrm{T}}^{\mathrm{miss}} <$ 120 GeV (Bin B)
		$40 < p_{\mathrm{T,}4\ell} < 70\mathrm{GeV}$ and $70 < p_{\mathrm{T}}^{\mathrm{miss}} < 120\mathrm{GeV}$ (Bin C)

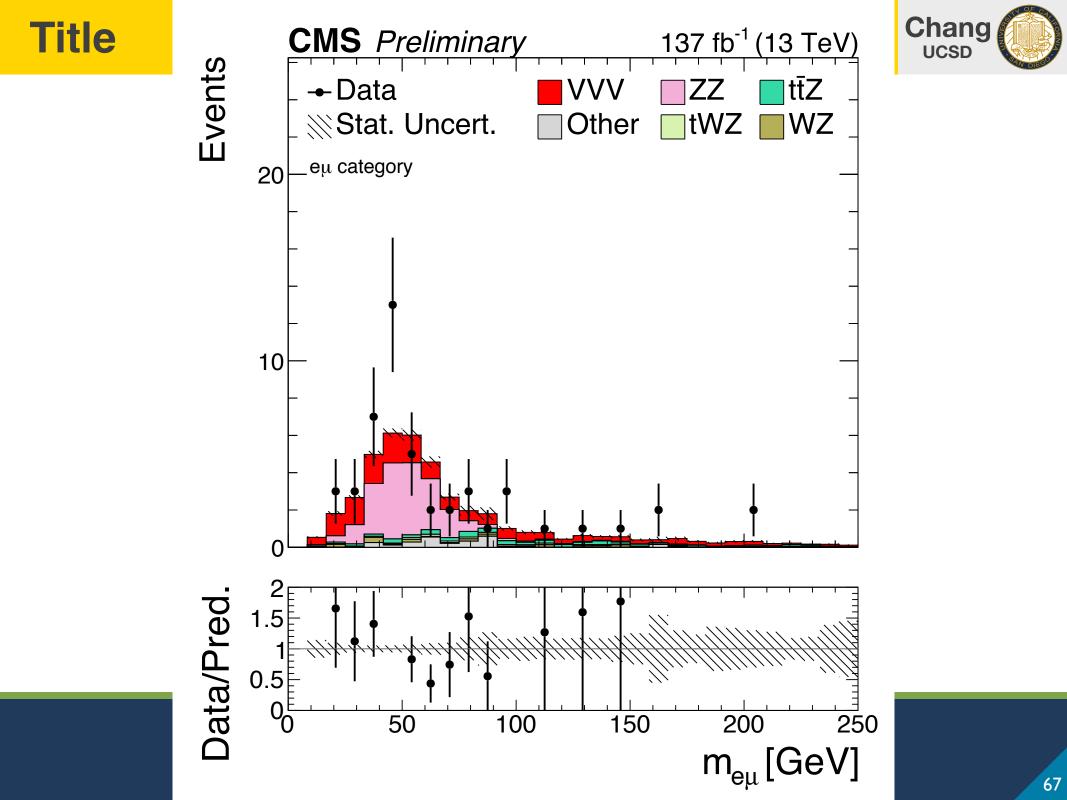
MT2

$$m_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{\nu(1)} + \vec{p}_{\text{T}}^{\nu(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(m_{\text{T}}^{(1)}(\vec{p}_{\text{T}}^{\nu(1)}, \vec{p}_{\text{T}}^{\text{e}}), m_{\text{T}}^{(2)}(\vec{p}_{\text{T}}^{\nu(2)}, \vec{p}_{\text{T}}^{\mu}) \right) \right]$$

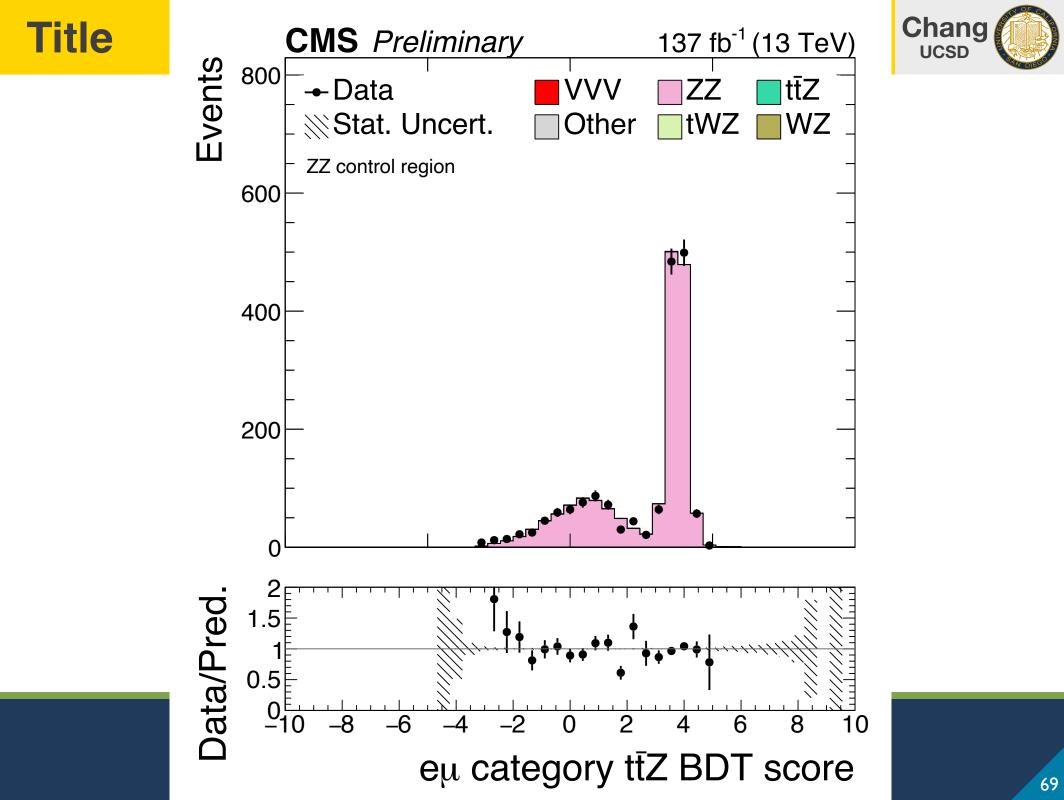


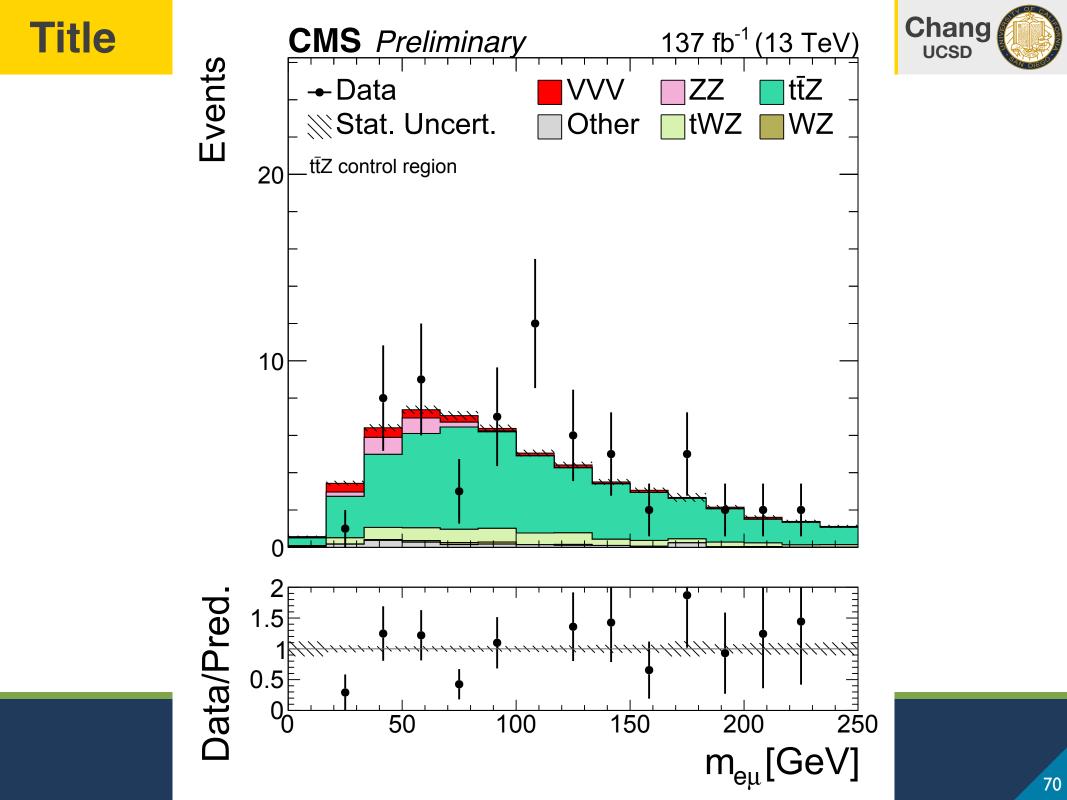

For WW→ lvlv sub-system of WWZ, endpoint is at m_W

For $Z \rightarrow \tau \tau \rightarrow IIvvvv$ sub-system of ZZ, endpoint is at m_{τ}


Title




Title



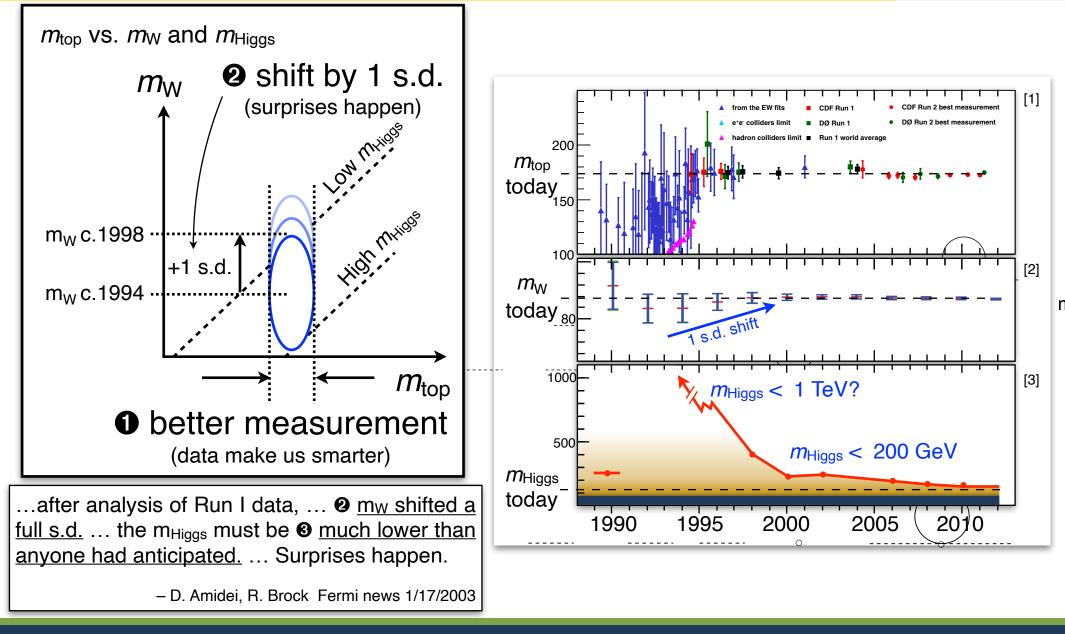
Title

Process	Higgs boson cont	tributions as signal	Higgs boson contributions as background				
	sequential-cut	BDT-based	sequential-cut	BDT-based			
WWW	2.5 (2.9)	3.3 (3.1)	1.0 (1.8)	1.6 (1.9)			
WWZ	3.5 (3.6)	3.4 (4.1)	0.9 (2.2)	1.3 (2.2)			
WZZ	1.6 (0.7)	1.7 (0.7)	1.7 (0.8)	1.7 (0.8)			
ZZZ	0.0 (0.9)	0.0 (0.9)	0.0 (0.9)	0.0 (0.9)			
VVV	5.0 (5.4)	5.7 (5.9)	2.3 (3.5)	2.9 (3.5)			

Process	Higgs boson contr	ributions as signal	Higgs boson contributions as background				
	sequential-cut	BDT-based	sequential-cut	BDT-based			
WZZ	$5.2(3.7^{+2.2}_{-1.3})$	$6.1 (3.8^{+2.2}_{-1.3})$	$5.8 (3.7^{+2.3}_{-1.3})$	$5.8(3.7^{+2.3}_{-1.3})$			
ZZZ	$5.4 (6.0^{+4.6}_{-2.6})$	$\begin{array}{c} 6.1 \ (3.8^{+2.2}_{-1.3}) \\ 5.4 \ (6.2^{+4.9}_{-2.7}) \end{array}$	$5.6 \ (6.3^{+5.3}_{-2.8})$	$5.7(6.3^{-1.3}_{-2.8})$			

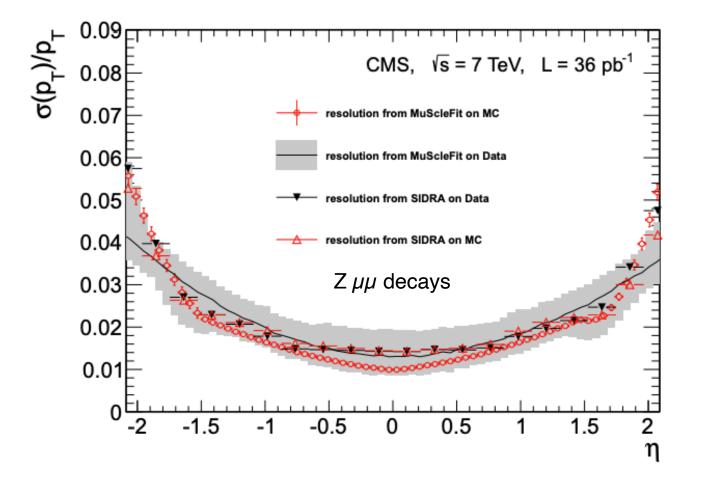
Signal	SS m_{jj} -in			SS <i>m</i> _{ii} -out		SS 1j			3ℓ			
region	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^\pm\mu^\pm$	$e^\pm e^\pm$	$e^{\pm}\mu^{\pm}$	$\mu^\pm\mu^\pm$	$e^\pm e^\pm$	$\mathrm{e}^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	0 SFOS	1 SFOS	2 SFOS
Lost/three ℓ	1.4±0.9	$5.5{\pm}1.6$	7.0±1.7	10.7±2.6	9.7±3.6	31.4±3.8	$2.5{\pm}1.1$	41.0±6.1	$5.8{\pm}1.6$	$3.5 {\pm} 0.7$	25.6±4.2	36.1±3.1
Irreducible	1.0±0.1	$0.6{\pm}0.1$	$2.9{\pm}0.2$	$4.7{\pm}0.4$	$1.9{\pm}0.2$	$15.5{\pm}1.2$	$0.4{\pm}0.0$	$4.6{\pm}0.2$	$0.5{\pm}0.1$	$1.3 {\pm} 0.1$	$1.2 {\pm} 0.1$	$0.3{\pm}0.0$
Nonprompt ℓ	0.6±0.6	$3.6{\pm}2.4$	$4.2{\pm}1.5$	$0.8{\pm}1.0$	$2.8{\pm}1.5$	$9.1{\pm}4.5$	$2.5{\pm}5.2$	$2.9{\pm}1.4$	$0.2{\pm}0.1$	$1.8{\pm}0.5$	7.5 ± 2.3	$1.8 {\pm} 1.1$
Charge flips	<0.1	< 0.1	< 0.1	$4.5{\pm}2.5$	< 0.1	< 0.1	< 0.1	$0.1{\pm}0.1$	< 0.1	< 0.1	$0.8{\pm}1.2$	$0.3{\pm}0.1$
$\gamma ightarrow { m nonprompt} \ell$	0.1±0.2	$0.1{\pm}0.4$	< 0.1	$1.4{\pm}0.5$	$1.1{\pm}0.4$	$0.7{\pm}0.4$	$0.6{\pm}1.2$	$4.8{\pm}8.0$	< 0.1	< 0.1	$1.0{\pm}0.4$	$0.1 {\pm} 1.5$
Background sum	3.1±1.1	9.8±2.9	$14.2{\pm}2.3$	22.1±3.8	$15.6{\pm}4.0$	$56.8{\pm}6.0$	$6.0{\pm}5.4$	$53.5{\pm}10.1$	$6.4{\pm}1.6$	$6.6{\pm}0.9$	$36.2{\pm}5.0$	38.7±3.6
WWW onshell	$0.9{\pm}0.4$	$2.3{\pm}0.9$	$4.6{\pm}1.7$	$0.9{\pm}0.4$	$1.0 {\pm} 0.6$	$3.3{\pm}1.3$	$0.3{\pm}0.2$	$1.2{\pm}0.4$	$0.4{\pm}0.2$	$6.7{\pm}2.4$	$4.3{\pm}1.6$	$1.8 {\pm} 0.7$
$\text{WH} \rightarrow \text{WWW}$	$0.4{\pm}0.3$	$1.3{\pm}0.9$	$1.2{\pm}0.5$	$0.5{\pm}0.3$	1.3 ± 1.3	$2.7{\pm}1.2$	$1.1{\pm}0.8$	6.5 ± 3.1	$2.2{\pm}1.1$	$3.4{\pm}1.6$	$5.0{\pm}2.1$	$0.6{\pm}0.6$
WWW total	1.3 ± 0.5	3.7±1.3	$5.8{\pm}1.7$	$1.5{\pm}0.5$	2.3 ± 1.4	$6.0{\pm}1.7$	$1.4{\pm}0.8$	7.7±3.1	2.5 ± 1.1	10.1 ± 2.9	9.3±2.6	$2.4{\pm}0.9$
WWZ onshell	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	$0.2{\pm}0.1$	< 0.1	< 0.1
$ZH \to WWZ$	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	$0.1 {\pm} 0.1$	$0.1 {\pm} 0.1$	< 0.1
WWZ total	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	$0.3 {\pm} 0.1$	$0.1 {\pm} 0.1$	< 0.1
WZZ onshell	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
$WH \to WZZ$	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
WZZ total	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ZZZ onshell	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
$ZH \to ZZZ$	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ZZZ total	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
VVV onshell	0.9±0.4	$2.3{\pm}0.9$	$4.6{\pm}1.7$	$0.9{\pm}0.4$	$1.0{\pm}0.6$	$3.3{\pm}1.3$	$0.3{\pm}0.2$	$1.2{\pm}0.4$	$0.4{\pm}0.2$	$6.9{\pm}2.4$	$4.3{\pm}1.6$	$1.8{\pm}0.7$
$\rm VH \rightarrow \rm VVV$	$0.4{\pm}0.3$	$1.3{\pm}0.9$	$1.2{\pm}0.5$	$0.5{\pm}0.3$	1.3 ± 1.3	$2.7{\pm}1.2$	$1.1{\pm}0.8$	6.5 ± 3.1	$2.2{\pm}1.1$	3.6±1.6	$5.1{\pm}2.1$	$0.6{\pm}0.6$
VVV total	1.3 ± 0.5	3.7±1.3	$5.8{\pm}1.7$	$1.5{\pm}0.5$	2.3 ± 1.4	$6.0{\pm}1.7$	$1.4{\pm}0.8$	7.7±3.1	2.5 ± 1.1	$10.4{\pm}2.9$	9.3±2.6	$2.4{\pm}0.9$
Total	4.4±1.2	13.5±3.2	20.0±2.9	23.6±3.8	$17.8{\pm}4.2$	62.7±6.3	$7.4{\pm}5.5$	$61.2{\pm}10.6$	9.0±2.0	17.0±3.0	$45.5{\pm}5.6$	41.1±3.7
Observed	3	14	15	22	22	67	13	69	8	17	42	39

Signal			$4\ell \mathrm{e}\mu$			4ℓ ee	e/µµ	5ℓ	6ℓ
region	bin 1	bin 2	bin 3	bin 4	bin 5	bin A	bin B		
ZZ	15.9±1.0	$1.6{\pm}0.1$	$0.6{\pm}0.1$	$0.6{\pm}0.1$	$0.2{\pm}0.0$	76.4±4.3	2.9±0.3	$0.30 {\pm} 0.09$	$0.01 {\pm} 0.01$
tīZ	$0.2{\pm}0.1$	$0.1{\pm}0.1$	$2.8{\pm}0.5$	$1.4{\pm}0.2$	$0.1{\pm}0.1$	$1.5{\pm}0.3$	$2.3{\pm}0.3$	< 0.01	< 0.01
tWZ	$0.1{\pm}0.1$	$0.1{\pm}0.1$	$0.6{\pm}0.1$	$0.7{\pm}0.1$	$0.1{\pm}0.1$	$0.5{\pm}0.1$	$0.7{\pm}0.1$	< 0.01	< 0.01
WZ	$0.5{\pm}0.2$	$0.2{\pm}0.2$	$0.5{\pm}0.2$	$0.3{\pm}0.3$	$0.1{\pm}0.1$	$1.0{\pm}0.4$	$0.2{\pm}0.1$	< 0.01	< 0.01
Other	$1.1{\pm}0.4$	$0.5{\pm}0.5$	$0.5{\pm}0.2$	$0.6{\pm}0.2$	< 0.1	$2.7{\pm}0.6$	$0.5{\pm}0.2$	< 0.01	< 0.01
Background sum	17.8±1.1	$2.5{\pm}0.5$	$5.0{\pm}0.6$	$3.6{\pm}0.4$	$0.5{\pm}0.1$	82.2±4.3	$6.6{\pm}0.5$	$0.30{\pm}0.09$	$0.01 {\pm} 0.01$
WWW onshell	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
$\text{WH} \rightarrow \text{WWW}$	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
WWW total	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
WWZ onshell	0.3±0.1	$0.4{\pm}0.2$	$1.4{\pm}0.7$	$3.6{\pm}1.5$	$1.0{\pm}0.5$	2.7±1.2	$3.2{\pm}1.4$	< 0.01	< 0.01
$ZH \to WWZ$	$1.1 {\pm} 0.5$	$1.1{\pm}0.5$	$0.5{\pm}0.2$	$1.3{\pm}0.5$	$1.8{\pm}0.8$	$2.9{\pm}1.2$	$1.5{\pm}0.6$	< 0.01	< 0.01
WWZ total	$1.3 {\pm} 0.5$	$1.5{\pm}0.5$	$1.9{\pm}0.8$	$4.9{\pm}1.6$	$2.9{\pm}0.9$	$5.6{\pm}1.7$	$4.7{\pm}1.5$	< 0.01	< 0.01
WZZ onshell	0.2±0.2	$0.1{\pm}0.1$	$0.2{\pm}0.2$	$0.4{\pm}0.4$	$0.1{\pm}0.1$	$0.5{\pm}0.4$	$0.2{\pm}0.2$	$2.62{\pm}1.82$	$0.03 {\pm} 0.05$
$WH \to WZZ$	$0.2{\pm}0.3$	$0.2{\pm}0.3$	< 0.1	$0.5{\pm}0.5$	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
WZZ total	$0.4{\pm}0.3$	$0.3{\pm}0.3$	$0.2{\pm}0.2$	$0.9{\pm}0.7$	$0.1{\pm}0.1$	$0.5{\pm}0.4$	$0.2{\pm}0.2$	$2.62{\pm}1.82$	$0.03{\pm}0.05$
ZZZ onshell	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
$ZH \to ZZZ$	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
ZZZ total	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
VVV onshell	0.5±0.2	$0.4{\pm}0.2$	$1.6{\pm}0.8$	$4.0{\pm}1.5$	$1.1 {\pm} 0.5$	3.2±1.3	3.4±1.4	$2.62{\pm}1.82$	$0.03 {\pm} 0.05$
$\rm VH \rightarrow \rm VVV$	$1.2 {\pm} 0.5$	$1.3{\pm}0.6$	$0.5{\pm}0.2$	$1.7{\pm}0.8$	$1.8{\pm}0.8$	2.9±1.2	$1.5{\pm}0.6$	< 0.01	< 0.01
VVV total	$1.7{\pm}0.6$	$1.7{\pm}0.6$	2.1 ± 0.8	$5.8{\pm}1.7$	$3.0{\pm}0.9$	6.1 ± 1.8	$4.8{\pm}1.5$	$2.62{\pm}1.82$	$0.03{\pm}0.05$
Total	19.5±1.2	$4.2{\pm}0.8$	7.1±1.0	9.4±1.8	$3.5{\pm}0.9$	88.2±4.7	$11.4{\pm}1.6$	2.92±1.82	$0.04 {\pm} 0.05$
Observed	22	9	7	8	3	80	11	3	0


Signal		SS <i>m</i> _{ii} -in			SS <i>m</i> _{ii} -out			SS 1j			3ℓ	
region	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\mu}$	$\mu^{\pm}\mu^{\pm}$	$e^\pm e^\pm$	$e^{\pm} \overset{"}{\mu}^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^\pm e^\pm$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	0 SFOS	1 SFOS	2 SFOS
Lost/three ℓ	$1.8 {\pm} 0.4$	10.9±2.0	8.7±1.0	8.8±1.7	46.0±6.2	$44.8 {\pm} 4.4$	8.4±1.3	$43.5 {\pm} 4.4$	34.5±2.7	$4.6{\pm}0.8$	15.1±1.5	58.3±2.4
Irreducible	2.1±0.4	13.0±3.6	$8.4{\pm}1.4$	9.8±1.4	$41.1 {\pm} 4.5$	$42.8{\pm}4.7$	2.6±0.6	22.8±8.6	13.2±1.9	$2.5{\pm}0.9$	2.2±1.2	$2.5{\pm}0.8$
Nonprompt ℓ	1.3±0.9	$5.8{\pm}2.4$	6.8±2.2	2.3±1.3	$12.0{\pm}6.1$	11.2 ± 3.8	$1.8{\pm}2.9$	$2.4{\pm}1.3$	$2.8{\pm}1.1$	$3.0{\pm}0.9$	5.7±1.6	$5.9{\pm}1.6$
Charge flips	< 0.1	$1.2{\pm}2.0$	< 0.1	$2.6{\pm}1.6$	$1.0{\pm}0.5$	< 0.1	$6.9{\pm}4.7$	$0.2 {\pm} 0.1$	< 0.1	< 0.1	1.1 ± 1.3	$0.7 {\pm} 0.2$
$\gamma ightarrow$ nonprompt ℓ	$1.4{\pm}0.4$	$2.3{\pm}0.9$	$0.1{\pm}0.8$	$8.6{\pm}3.1$	$19.2{\pm}5.1$	$2.3{\pm}0.9$	$3.8{\pm}1.1$	$19.7{\pm}6.0$	13.8±7.0	< 0.1	$0.6{\pm}0.7$	$0.2 {\pm} 0.3$
Background sum	6.7±1.2	33.3±5.2	$24.0{\pm}2.9$	32.1±4.3	119±11	101 ± 8	$23.6{\pm}5.8$	$88.7 {\pm} 11.4$	$64.4{\pm}7.8$	$10.1{\pm}1.5$	$24.7{\pm}2.9$	67.6±3.1
WWW onshell	$1.0{\pm}0.5$	$3.3{\pm}1.5$	$3.5{\pm}1.6$	$0.9{\pm}0.5$	$3.9{\pm}1.8$	$4.1{\pm}1.9$	$0.5{\pm}0.3$	$1.8{\pm}0.8$	$1.7{\pm}0.9$	$5.9{\pm}2.6$	3.8±1.7	2.5±1.2
$\rm WH \rightarrow \rm WWW$	0.2±0.3	$1.9{\pm}1.5$	$0.6{\pm}0.4$	$0.4{\pm}0.4$	$1.3{\pm}0.8$	$1.7{\pm}1.0$	$0.8{\pm}0.5$	$4.5{\pm}2.7$	3.3±2.0	3.0±1.7	$2.7{\pm}1.5$	$1.3{\pm}0.8$
WWW total	1.2 ± 0.6	5.1±2.2	$4.1{\pm}1.6$	$1.3 {\pm} 0.6$	$5.3{\pm}2.0$	$5.7{\pm}2.1$	$1.4{\pm}0.6$	$6.3 {\pm} 2.8$	5.0±2.2	$8.8 {\pm} 3.1$	$6.6{\pm}2.3$	3.8±1.4
WWZ onshell	0.1±0.1	$0.3{\pm}0.2$	$0.2{\pm}0.1$	< 0.1	< 0.1	$0.1{\pm}0.1$	$0.1{\pm}0.1$	< 0.1	< 0.1	$0.3{\pm}0.2$	$0.2{\pm}0.2$	$0.2{\pm}0.1$
$ZH \to WWZ$	0.1±0.1	< 0.1	< 0.1	< 0.1	< 0.1	$0.3{\pm}0.3$	< 0.1	< 0.1	$0.4{\pm}0.4$	$0.2{\pm}0.1$	< 0.1	< 0.1
WWZ total	0.1±0.2	$0.3 {\pm} 0.2$	$0.2{\pm}0.1$	< 0.1	< 0.1	$0.4{\pm}0.3$	$0.1 {\pm} 0.1$	< 0.1	$0.4{\pm}0.4$	$0.4{\pm}0.2$	$0.2 {\pm} 0.2$	$0.2{\pm}0.1$
WZZ onshell	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
$WH \to WZZ$	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
WZZ total	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ZZZ onshell	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
$ZH \to ZZZ$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ZZZ total	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
VVV onshell	$1.0{\pm}0.5$	$3.5{\pm}1.5$	$3.7{\pm}1.6$	$0.9{\pm}0.5$	$3.9{\pm}1.8$	$4.2{\pm}1.9$	$0.6{\pm}0.3$	$1.8{\pm}0.8$	$1.7{\pm}0.9$	6.1±2.6	$4.0{\pm}1.8$	2.7±1.2
$\rm VH \rightarrow \rm VVV$	0.3±0.3	$1.9{\pm}1.5$	$0.6{\pm}0.4$	$0.4{\pm}0.4$	$1.3{\pm}0.8$	$2.0{\pm}1.0$	$0.8{\pm}0.5$	$4.5{\pm}2.7$	3.7±2.0	$3.1{\pm}1.7$	$2.7{\pm}1.5$	$1.3{\pm}0.8$
VVV total	1.3 ± 0.6	$5.4{\pm}2.2$	$4.2{\pm}1.6$	$1.3{\pm}0.6$	$5.3{\pm}2.0$	6.1±2.1	$1.4{\pm}0.6$	$6.3{\pm}2.8$	$5.4{\pm}2.2$	9.3±3.1	$6.8{\pm}2.3$	3.9±1.4
Total	8.0±1.3	38.7±5.6	$28.2{\pm}3.4$	$33.5 {\pm} 4.4$	125 ± 11	107±8	$25.0{\pm}5.8$	95.0±11.8	69.8±8.1	19.4 ± 3.4	31.4 ± 3.7	71.5±3.4
Observed	5	46	20	31	112	118	29	101	69	20	32	69

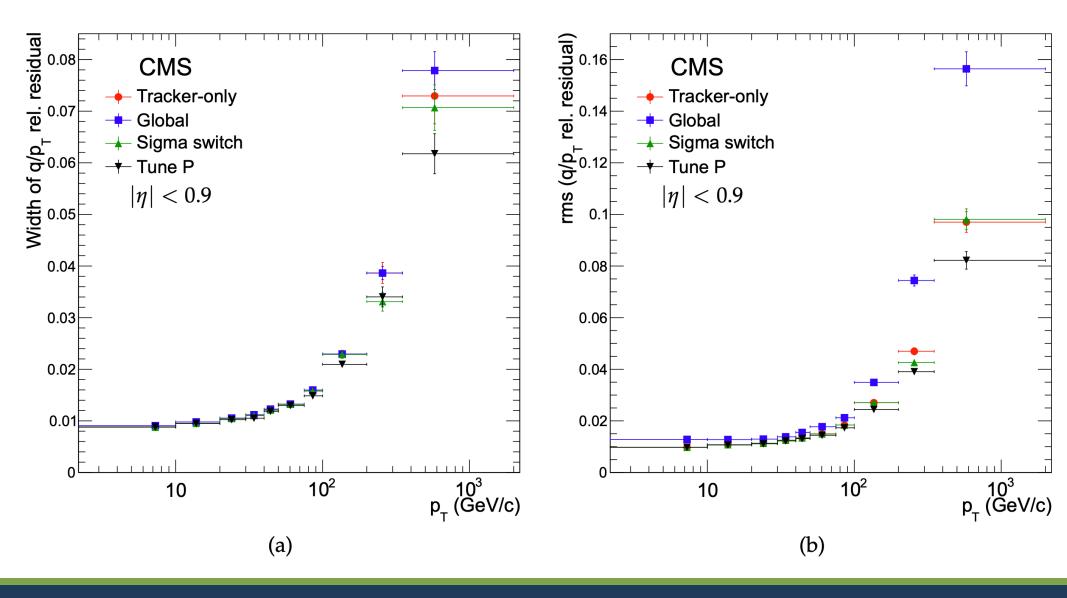
Signal		4ℓ	еµ			$4\ell \mathrm{ee}/\mu\mu$		5ℓ	6ℓ
region	bin 4	bin 3	bin 2	bin 1	bin A	bin B	bin C		
ZZ	0.3±0.0	$0.7{\pm}0.0$	$0.7{\pm}0.0$	$0.4{\pm}0.0$	1.8±0.2	$6.0{\pm}0.6$	$5.0{\pm}0.5$	$0.30{\pm}0.08$	$0.01 {\pm} 0.01$
tīZ	$0.2{\pm}0.0$	$0.3{\pm}0.1$	$0.8{\pm}0.1$	$2.3{\pm}0.4$	$1.4{\pm}0.2$	$1.1 {\pm} 0.2$	$0.2{\pm}0.0$	< 0.01	< 0.01
tWZ	$0.1{\pm}0.1$	$0.1{\pm}0.1$	$0.3{\pm}0.0$	$0.8{\pm}0.1$	$0.5{\pm}0.1$	$0.3{\pm}0.1$	$0.1{\pm}0.1$	< 0.01	< 0.01
WZ	$0.2{\pm}0.1$	$0.1{\pm}0.1$	$0.1{\pm}0.2$	$0.6{\pm}0.2$	< 0.1	$0.2{\pm}0.1$	$0.1{\pm}0.1$	< 0.01	< 0.01
Other	< 0.1	$0.2{\pm}0.1$	$0.6{\pm}0.3$	$0.2{\pm}0.1$	< 0.1	$1.4{\pm}0.5$	$0.1{\pm}0.1$	< 0.01	< 0.01
Background sum	$0.8{\pm}0.1$	$1.4{\pm}0.1$	$2.5{\pm}0.3$	$4.3{\pm}0.4$	$3.7{\pm}1.9$	$9.1{\pm}0.8$	$5.5{\pm}0.5$	$0.30{\pm}0.08$	$0.01 {\pm} 0.01$
WWW onshell	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
$WH \to WWW$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
WWW total	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
WWZ onshell	0.5±0.2	$0.5{\pm}0.2$	$1.1{\pm}0.4$	$4.0{\pm}1.6$	2.1±0.9	$1.2{\pm}0.4$	$0.6{\pm}0.2$	< 0.01	< 0.01
$ZH \to WWZ$	2.3±0.9	$1.1{\pm}0.4$	$0.3{\pm}0.1$	$0.1{\pm}0.1$	$0.8{\pm}0.3$	$0.9{\pm}0.4$	$0.5{\pm}0.2$	< 0.01	< 0.01
WWZ total	2.8±0.9	$1.6{\pm}0.5$	$1.4{\pm}0.4$	4.1 ± 1.6	$2.9{\pm}1.0$	2.1 ± 0.6	1.1 ± 0.3	< 0.01	< 0.01
WZZ onshell	< 0.1	$0.1{\pm}0.1$	$0.1{\pm}0.1$	$0.4{\pm}0.3$	$0.2{\pm}0.2$	$0.1{\pm}0.1$	$0.1{\pm}0.1$	$2.17{\pm}1.46$	$0.03 {\pm} 0.04$
$WH \to WZZ$	< 0.1	$0.4{\pm}0.3$	$0.1{\pm}0.2$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
WZZ total	< 0.1	$0.4{\pm}0.4$	$0.2{\pm}0.2$	$0.4{\pm}0.3$	$0.2{\pm}0.2$	$0.1{\pm}0.1$	$0.1{\pm}0.1$	$2.17{\pm}1.46$	$0.03{\pm}0.04$
ZZZ onshell	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
$ZH \to ZZZ$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
ZZZ total	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01
VVV onshell	0.5±0.2	0.6±0.2	$1.2 {\pm} 0.4$	$4.4{\pm}1.6$	2.3±0.9	$1.3{\pm}0.5$	0.7±0.2	$2.17{\pm}1.46$	$0.03 {\pm} 0.04$
$\mathrm{VH} \to \mathrm{VVV}$	2.3±0.9	$1.5{\pm}0.5$	$0.4{\pm}0.3$	$0.1{\pm}0.1$	$0.8{\pm}0.3$	$0.9{\pm}0.4$	$0.5{\pm}0.2$	< 0.01	< 0.01
VVV total	2.8±0.9	2.1 ± 0.6	$1.6{\pm}0.5$	$4.5{\pm}1.6$	3.1±1.0	$2.2{\pm}0.6$	$1.2{\pm}0.3$	$2.17{\pm}1.46$	$0.03{\pm}0.04$
Total	3.6±0.9	3.5±0.6	4.1 ± 0.6	8.8±1.7	6.8±2.1	11.3±1.0	6.6±0.6	$2.47{\pm}1.46$	$0.04{\pm}0.04$
Observed	7	1	5	7	6	8	7	3	0

History lesson



History tells us with more data we get smarter; also surprises happen

Muon resolution



ment with the results obtained from simulation. The $\sigma(p_T)/p_T$ averaged over ϕ and η varies in p_T from $(1.8 \pm 0.3 (\text{stat.}))\%$ at $p_T = 30 \text{ GeV}/c$ to $(2.3 \pm 0.3 (\text{stat.}))\%$ at $p_T = 50 \text{ GeV}/c$, again in good agreement with the expectations from simulation.

https://arxiv.org/pdf/1206.4071.pdf

Muon resolution

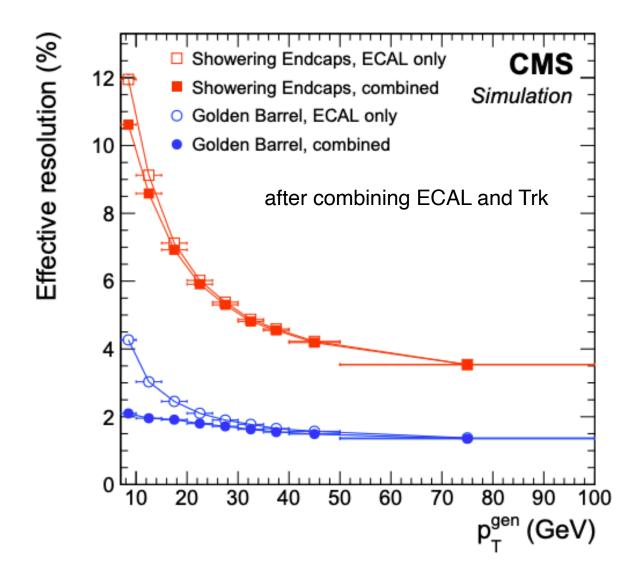
https://arxiv.org/pdf/1206.4071.pdf

arXiv.org > physics > arXiv:1502.02701

Physics > Instrumentation and Detectors

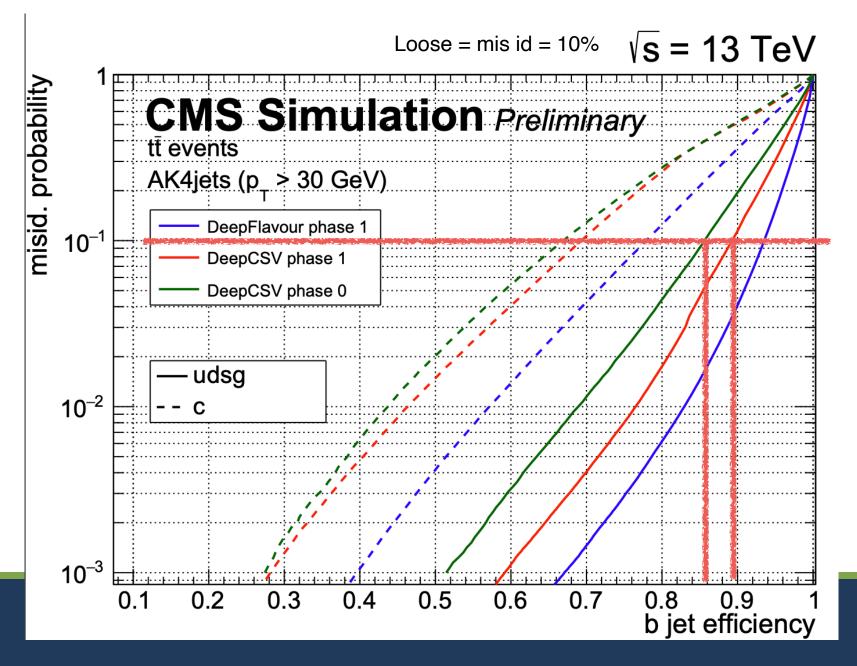
[Submitted on 9 Feb 2015 (v1), last revised 1 Jul 2015 (this version, v2)]

Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at sqrt(s) = 8 TeV


CMS Collaboration

The performance and strategies used in electron reconstruction and selection at CMS are presented based on data corresponding to an integrated luminosity of 19.7 inverse femtobarns, collected in proton-proton collisions at sqrt(s) = 8 TeV at the CERN LHC. The paper focuses on prompt isolated electrons with transverse momenta ranging from about 5 to a few 100 GeV. A detailed description is given of the algorithms used to cluster energy in the electromagnetic calorimeter and to reconstruct electron trajectories in the tracker. The electron momentum is estimated by combining the energy measurement in the calorimeter with the momentum measurement in the tracker. Benchmark selection criteria are presented, and their performances assessed using Z, Upsilon, and J/psi decays into electron-positron pairs. The spectra of the observables relevant to electron reconstruction and selection as well as their global efficiencies are well reproduced by Monte Carlo simulations. The momentum scale is calibrated with an uncertainty smaller than 0.3%. The momentum resolution for electrons produced in Z boson decays ranges from 1.7 to 4.5%, depending on electron pseudorapidity and energy loss through bremsstrahlung in the detector material.

Electron resolution



b tagging

https://twiki.cern.ch/twiki/pub/CMSPublic/BTV13TeV2017FIRST2018/PT30GeV.pdf

