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• Why study multi-boson interactions (MBI)?
• How do we study MBI at LHC
• Some of the recent results from CMS Collaboration
• Future direction of MBI
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Discovery of advanced our understanding of origin of mass in a major way



Building blocks of nature (fermions)
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Electroweak Sector of the Standard Model
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We must understand the W, Z, H and their interactions

At the heart of the 
electroweak sector we have 

the W, Z, and H bosons

Spin 1
• Mass of W is 80 GeV
• Mass of Z is 91 GeV

Spin 0
• Mass of H is 125 GeV

⇒ We must build upon this 
discovery to understand 

electroweak sector
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We must understand the W, Z, H and their interactions

At the heart of the 
electroweak sector we have 

the W, Z, and H bosons

Spin 1
• Mass of W is 80 GeV
• Mass of Z is 91 GeV

Spin 0
• Mass of H is 125 GeV

⇒ We must build upon this 
discovery to understand 

electroweak sector

Top is also 
connected

Top quark
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https://indico.cern.ch/event/687651/contributions/3403318/attachments/1851013/3038718/LHCP2019_TheoryVision_Craig.pdf

What we 
know

How is electroweak 
symmetry broken?

arXiv:1307.3536
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What we 
know

Standard 
Model 

prediction

New physics? How is electroweak 
symmetry broken?

What is the fate of 
the universe?

arXiv:1307.3536

Understanding Higgs potential have deep implications to cosmology
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How do we probe TeV scale MBI?
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(Currently, only) Hadron colliders can probe TeV scale MBI

TeV

Today

arXiv:2003.09084
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Measure multi-boson production rates to study multi-boson interactions

Can probe quartic 
gauge coupling

How does hadron collisions probe MBI?



9

Chang
UCSD

pp → nV + mX

q

q

…

X
V

V

V

X

Consider multi-object production process
(i.e. 2 → 2, 3, 4, … scattering processes)  

For example

Measure multi-boson production rates to study multi-boson interactions

Can probe quartic 
gauge coupling

How does hadron collisions probe MBI?
Can also probe 
Higgs-gauge 

coupling



9

Chang
UCSD

pp → nV + mX

q
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…
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Consider multi-object production process
(i.e. 2 → 2, 3, 4, … scattering processes)  

For example

Measure multi-boson production rates to study multi-boson interactions

Can probe quartic 
gauge coupling

How does hadron collisions probe MBI?
Can also probe 
Higgs-gauge 

coupling
Boson collider!
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If total cross 
section is “1”

W or Z

Single boson 
production ~ 1

O(1-10 Million)

Majority are 
QCD events

Top quark 
events

1
O(100 Million)~

Need to have large number of pp collisions to study MBI

Multi-boson 
processes

1
O(Trillion)

~

or rarer
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Experiments
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CMS experiment ATLAS experiment

MBIs are mostly studied by two LHC experiments: ATLAS and CMS
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To first order two experiments have similar results

I am currently a member of CMS Collaboration
(Was also a member in ATLAS Collaboration in the past)

I may inadvertently show (highlight) CMS’ results over ATLAS’
simply because I am more familiar with CMS results.
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LHC provides highest energy pp collisions ever recorded
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LHC tunnel

1011 protons
per bunch

~3000 
bunches

25 nanosec 
in between

proton
bunches
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LHC provides highest energy pp collisions ever recorded

Large dataset of

30-40 pp collisions 
per bunch crossing

(35 pp collisions) × (40 MHz) = 
~1.5 billions pp collisions per second

proton
bunches

LHC tunnel

1011 protons
per bunch

~3000 
bunches

25 nanosec 
in between

proton
bunches



Data collected by LHC experiments
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From 2015 to 2018, ATLAS and 
CMS experiments each 

recorded around 15 quadrillion 
pp collision events

LHC's large data enables us to study rare multi-boson processes

Total amount of pp collision data delivered by 
LHC, and recorded by CMS experiment (ATLAS is similar)

~15 quadrillion pp collisions

⇒ O(1k - 10k) Multi-boson 
processes



Recap
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Higgs discovery was a big triumph

Building on discovery, we must verify multi-boson interactions

Studying multi-boson production probes multi-boson interactions

Multi-boson productions are rare

It requires large and energetic pp collisions data

⇒ We need the LHC to probe multi-boson interactions



Title
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But how do we select the interesting O(1000) events
out of 1016 pp collision events?

⇒ Select events with specific features present in 
multi-boson but not in other background events



Decay of W, Z bosons
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W’s and Z’s produced can be identified via electrons and muons

Once multi-bosons 
are produced the 
W’s, and Z’s can 
decay to leptons

W–

e–, µ–, τ–

ve, vµ, vτ
~10% each flavor

Z e+, µ+, τ+

e–, µ–, τ–

~3% each flavor
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W’s and Z’s produced can be identified via electrons and muons

Once multi-bosons 
are produced the 
W’s, and Z’s can 
decay to leptons

W–

e–, µ–, τ–

ve, vµ, vτ
~10% each flavor

Z e+, µ+, τ+

e–, µ–, τ–

~3% each flavor

If all W’s from pp → WWW decays to e or µ’s ⇒ O(100s) events
If all Z’s from pp → ZZZ decays to e or µ’s ⇒ ~2 events



Overview of lepton physics at the LHC
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**N events estimated from W, Z, tt,̅ WW, WZ, ZZ, ttW̅, WZZ, ZZZ cross section 
with theoretical branching fractions without detector effects and ignoring τ → e, µ
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Target large # of lepton events for multi-boson productions (∵ lower bkg.)

Final states to look at 
for rare processes

If one only looks 
at 5 or 6 lepton 

events, there will 
be very small 
backgrounds
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Typical search strategy
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1. Define low background signal regions (SRs)
2. Estimate background yields by extrapolating from bkg. 

enriched control region (CR)
3. Ascertain accuracy of the extrapolation from a different sample

Uncorrelated 
discriminating Var 1

A

B

CR

SR

Extrapolate

ascertain 
accuracy of 

extrapolation

background distribution

signal distribution
Uncorrelated 

discriminating Var 2

Make smart choices (brains) then execute to deliver (brawns)



Worldwide LHC Computing Grid (Brawns)
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Global collaboration 
of around 170 

computing centers 
in more than 40 

countries



Details on the operation
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Detectors have ~70M channels
× few bytes per channel
× 40 MHz event rate
× 1/1000 zero-suppression
⇒  O(10) TB / s
× “one” year (4 × 106 secs)
⇒ O(100) Exabyte / year
× 1/100,000 event filtering
⇒ ~5 PB / year

After some processing e.g. CMS provides
~10 PB of data and simulation for analysis
This is reprocessed twice a year

Then this is further reduced by x10 and is 
processed monthly

Then we further reduce it x5 and can be 
done in a ~week

And then we further reduce it ~few TB that 
can be processed daily



Recent results in multi-boson physics
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• Several important results have come out recently from both ATLAS and CMS
• I will highlight a few (from CMS)
• (Disclaimer: Rest of the talk from here on will focus mostly on CMS)

WW scattering

e±, µ±

e±, µ±

ve, vµ

ve, vµ

Same-sign dilepton + 2 quarks

q

q
Tri-boson process

4 or 5 leptons

Z→2 lep

W→1 lep

W/Z→1, 2 lep

⇒ electrons, muons, and jets reconstructions are crucial 



µ

Solenoid

Electron

CMS experiment measures leptons well

24

Chang
UCSD

e/µ among the best 
measured particles at CMS 

by combining tracker, 
calorimeter, and chambers 

measurements
(1-2% resolution for well measured ones)

Muon

Tracker

calorimeters

muon ch
ambers

Muon reconstruction in CMS
• As only fundamental minimum ionizing particles, muons are easier to identify: 

matching tracks in the inner and outer tracking detectors.

• Fake muons only happen if hadrons punch through the calorimeter.

4/14/2020 Hannsjörg Weber (Fermilab) 16

• Very small fake efficiency with 
≥98% signal muon efficiency.

• Because of the excellent tracking, 
exceptional momentum/mass 
resolution.

MUON RESOLUTION IN 2018

0.5

1

1.5

610◊
Data

µµ�⇥Z / 
Background

(2018, 13 TeV)-1fb

CMS
Preliminary

59.76

85 90 95 100
(GeV)µµm

0.9

1

1.1

D
at

a 
/ M

C

Corrected

Resolution measured in Z ! µ+µ�

events in the 2018 dataset. Top and
bottom left plots show the mean and
the standard deviation of the mµ+µ�

resonance peak obtained fitting the
distribution to the convolution of a
Gaussian with a Breit-Wigner and a
Crystal-Ball. Uncertainties
incorporate systematic uncertainties
from the Rochester method.

Plots in the right shows the data / Monte Carlo comparison of the mµ+µ� distribution before
(top) and after (bottom) applying the scale corrections given by the Rochester method.

Page 10

Z → µµ 
reconstruction

Excellent lepton reconstruction and simulation

drawn to 
~scale



Jet formation and identification
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Quarks and gluons produced 
from pp collisions manifest as a 

“jet” of particles

 (GeV)
T

Jet p
200 300 1000 2000

 d
y 

(p
b/

G
eV

)
T

 / 
dp

σ2 d

-310

-110
10
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510
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1110

1310

1510
)6|y| < 0.5 (x10

)50.5 < |y| < 1.0 (x10
)41.0 < |y| < 1.5 (x10
)31.5 < |y| < 2.0 (x10
)22.0 < |y| < 2.5 (x10
)12.5 < |y| < 3.0 (x10
)03.2 < |y| < 4.7 (x10

PH+P8 CUETM1

 (13 TeV)-1< 71 pb

 R = 0.7tAnti-k

CMS

Excellent jet reconstruction and simulation

arXiv:1605.04436



Jets from vector boson scattering
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WW scattering

e±, µ±

e±, µ±

ve, vµ

ve, vµ

Same-sign dilepton + 2 quarks

q

q
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Two jets from VBS process tend to have relatively high invariant mass

~100 
events

arXiv:2005.01173
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WW scattering

e±, µ±

e±, µ±

ve, vµ
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Same-sign dilepton + 2 quarks
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Features of Z → ll decay
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Z decays predominantly to ee/µµ on-shell

40 60 80 100120140160180
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µ e→Z 
 (off-shell)µµ ee/→Z 
 (on-shell)µµ ee/→Z 

mll [GeV]
**Simulated w/ MadGraph/Pythia/Delphes with 25/10 GeV PT cuts

Plot of dilepton mass from Z→ll decay

A.
U

.

Z → ee/µµ within Z mass
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Z e+, µ+, τ+

e–, µ–, τ–

~3% each flavor

mass of Z 
~90 GeV
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Z → ee/µµ outside Z mass
Z → eµ

If one selects eµ final 
state, Z is reduced by 
2 orders of magnitude

(e, µ from τ are soft)

100x 
smaller

than peak

Z

τ
τ

e+

µ-

v

v

v
v

Z e+, µ+, τ+

e–, µ–, τ–

~3% each flavor

mass of Z 
~90 GeV



Exploiting Z decay features
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Flavor choice can reduce background while not affecting signal

Z

Z

τ
τ

e+

µ-
v
v

v

v

e+

e- Z + eµ

4 lepton

W
W

Z
e+

e-
e+

v

v
µ-

Z + eµ

Signal Background

Highly suppressed 
due to flavor choice



Top quark decay features
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Top quark is produced more 
abundantly than multi-bosons
(see slide 9 for typical rates)

When produced top quark 
decays ~100% of the time 
to b quark and a W boson

top

bottom

W

Produces W bosons that are 
not of our interest

bottom quark has a long-lifetime 
(flight distance ~ 100s of µm)

⇒ Tag bottom quark and reject events with bottom quarks



Machine learning in LHC
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b-tagging via machine learning is one of many successful application of 
ML that is continually growing in particle physics

Was this from bottom quark?

Train deep neural network 

Better

CMS-DP-2017-005



b quark jets tagging
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Preliminary CMS  (13 TeV)-1137 fb

0SFOS channel

tt ̅+ W

Tri-boson

tt ̅

Number of b-tagged jets in the event

Reject events with bottom quark to reduced backgrounds from top quark

https://cms-results.web.cern.ch/cms-results/public-
results/superseded/SMP-19-014/index.html



Applying ML to event classifier
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Boosted decision tree is widely used in many analyses at the LHC

https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

Training data set

Tree #1
Tree #2

Tree #N…

Build multiple 
decision trees

Aggregate 
decision trees to 
build discriminant

Train dedicated boosted decision trees to maximize sensitivity

Signal

Background

BDT score



WWZ signal vs. ZZ or ttZ̅ backgrounds 
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Use multi-classifier machine learning technique to maximize sensitivity
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arXiv:2006.11191

https://cms-results.web.cern.ch/cms-results/public-
results/superseded/SMP-19-014/index.html



Very rare 5 lepton events
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W

Z
Z

e+

e-

e+
v

e+

e-

• Once you make signal selection there aren't much background left
• Expected total of 2 events with 3:1 signal to background ratio
• And we’ve observed 3 events
• Only now becoming accessible to study!

5 lepton events are clean and are becoming accessible for the first time



5 lepton event display
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e+

e–

Z mass = 
92 GeV

e+

e–

Z mass = 
91 GeV

e+

Missing 
Transverse 

Energy “MET”

W transverse 
mass = 65 GeV Nexp(WZZ→e+ve±e∓e±e∓) ~ 1 event

(cf. LHC provided 1.5 × 1016 collisions)

V = W, Z

35

CMS experiment at the LHC, CERN 
Data recorded: 2016-Oct-09 21:24:05.010240 GMT 

Run 282735, Event No. 989682042 LS 491



WW scattering results
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• O(100) events observed
• Measure the production rates as 

a function of important variables
• The measured cross section is 

compatible with the SM

WW scattering cross section has been measured and found to be 
consistent with SM

arXiv:2005.01173
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VVV mode Significance [σ]
WWW 3.3 (3.1)
WWZ 3.4 (4.1)
WZZ 1.7 (0.7)
ZZZ 0 (0.9)

Combined 5.7 (5.9)

• We have observed production of three massive gauge boson for the first time!
• We also found evidences separately for the WWW and WWZ production.
• The cross sections are compatible with the standard model expectation.

Measured cross section
Theoretical cross sectionSignal strength µ = 

SM

First observation of VVV and evidences for WWW and WWZ productions

St
at

 li
m

ite
d

O(10) events only
⇒ measure total cross section

arXiv:2006.11191



HL-LHC

38

Chang
UCSD

1016 collisions

20x more

We’ve only seen ~5% of the total data LHC will provide in its lifetime



Future of multi-boson interaction
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W±

W±

H

l±

l±

v

v

j

j

Same-sign turns 
LHC into a 

Higgs collider!

pp → W±W±H jj

H

j

j

pp → HH jj

H
Di-higgs 

production

arXiv:1812.09299 Henning, Lombardo, Riembau, Riva
arXiv:2006.09374 Stolarski, Wu

V

j

j

pp → VH jj

H
VH production 
with VBS jets

There are many more rare events that we should search for and study



Future colliders
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Today
arXiv:2003.09084 Future

Ultimately FCC-hh with 100 TeV collider will map out the Higgs potential 

“Europe, together with its 
international partners, 
should investigate the 
technical and financial 
feasibility of a future hadron 
collider at CERN with a 
centre-of-mass energy of at 
least 100 TeV …”

— 2020 Update of the 
European Strategy for 

Particle Physics



Summary
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• Building on the discovery of the Higgs boson we must study the multi-boson 
interactions and its compatibility with the Standard Model

• LHC has now collected large enough data to allow for the first time study 
some of the rare multi-boson processes

• Recently we have made an observation of triboson and established 
evidence for for several important multi-boson processes

• In the future with 20x more data many more interesting processes will also 
be studied as well



Electroweak sector
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