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• Why study multi-boson interactions (MBI)?
• How do we study MBI at LHC
• Triboson result from CMS
• Future direction of multi-boson physics
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⇒ EW symmetry is broken
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Spin 1
• Mass of W is 80 GeV (≠ 0)
• Mass of Z is 91 GeV (≠ 0)
⇒ EW symmetry is broken

We must understand the W, Z, H and their interactions
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Is the interaction and couplings all SM-like?
⇒ Crucial test of electroweak theory
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• Are multi-bosons interactions SM? (including Higgs self-coupling)
• (Deep implications, e.g. baryogenesis, stability of the universe.)

• Is it the only Higgs boson? (or are there more? H1, H2, H±, … ??)
• If so, what are their role in the electroweak symmetry breaking?
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Studying multi-boson productions helps answering these questions
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massive bosons

also
bad high E 
behavior 
w/o Higgs

1978 (way) before top/W/Z/Higgs discovery 
Chanowitz, Furman, Hinchliffe

Multi-X (X = t, W, Z, H) electroweak interactions must be studied in detail
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Top is also 
connected -X



Physics of VVV production (V = W, Z)
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Triboson process has access to studying many multi-boson interactions
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cubic gauge 
interaction

quartic gauge 
interaction

Higgs-gauge 
interaction

VH→VVV* is part of our 
signal. Their contribution is 
subdominant. (1/3 of signal 

in our signal regions)

Four VVV modes
• WWW
• WWZ
• WZZ
• ZZZ



Previous work on VVV physics
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• ATLAS searched for WWW in 8 TeV: 0.96σ (1.05σ)  arXiv:1610.05088

• CMS searched for WWW in 13 TeV 36 fb⁻¹: 0.6σ (1.78σ) arXiv:1905.04246

• ATLAS searched for VVV in 13 TeV 80 fb⁻¹: 4.1σ (3.1σ) arXiv:1903.10415

Both ATLAS and CMS have been searching for triboson processes and 
using them to test SM and constrain new physics

arXiv:1905.04246 arXiv:1610.05088arXiv:1903.10415

VVV evidence
Axion-like-particle
triboson signature limit SMEFT Dim8 operator limit



VVV production at LHC
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We are targeting all possible VVV productions w/ or w/o Higgs:
• pp→WWW
• pp→WWZ
• pp→WZZ
• pp→ZZZ

And the combined production of all pp→VVV



Data collected by LHC experiment
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From 2015 to 2018, CMS 
experiment recorded around 

15 quadrillion pp collision 
events

LHC's large provides large and energetic pp collision data set to study 
rare multi-boson processes

Total amount of pp collision data delivered by 
LHC, and recorded by CMS experiment

~15 quadrillion pp collisions

⇒ ~5k - 50k Tri-boson 
processes
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~0.51 pb

~0.35 pb

~0.1 pb
~0.04 pb

Production cross section decreases with more Z’s

Less than 0.5 pb each VVV process (~5k to ~70k produced)

~70k

~10k

~50k

~5k



EWK multi-boson processes are rare

12

Chang
UCSD

If total cross 
section is “1”



EWK multi-boson processes are rare

12

Chang
UCSD

If total cross 
section is “1”

Majority are 
QCD events



EWK multi-boson processes are rare

12

Chang
UCSD

If total cross 
section is “1”

W or Z

Single boson 
production ~ 1

~1-10 Million

Majority are 
QCD events



EWK multi-boson processes are rare

12

Chang
UCSD

If total cross 
section is “1”

W or Z

Single boson 
production ~ 1

~1-10 Million

Majority are 
QCD events

Top quark 
events

1
~100 Million~



EWK multi-boson processes are rare

12

Chang
UCSD

If total cross 
section is “1”

W or Z

Single boson 
production ~ 1

~1-10 Million

Majority are 
QCD events

Top quark 
events

1
~100 Million~

Tri-boson 
processes

1
~Trillion

~

or rarer



EWK multi-boson processes are rare

12

Chang
UCSD

If total cross 
section is “1”

W or Z

Single boson 
production ~ 1

~1-10 Million

Majority are 
QCD events

Top quark 
events

1
~100 Million~

Need to have large number of pp collisions to study MBI

Tri-boson 
processes

1
~Trillion

~

or rarer



EWK multi-boson processes are rare

12

Chang
UCSD

If total cross 
section is “1”

W or Z

Single boson 
production ~ 1

~1-10 Million

Majority are 
QCD events

Top quark 
events

1
~100 Million~

Need to have large number of pp collisions to study MBI
(Also energetic since N × ~100 GeV particles)

Tri-boson 
processes

1
~Trillion

~

or rarer



W’s and Z’s can most 
easily identified via 

electrons and muons

Decay of W, Z bosons

13

Chang
UCSD

W–

e–, µ–, τ–

ve, vµ, vτ
BR ~10% each flavor

Z e+, µ+, τ+

e–, µ–, τ–

BR ~3% each flavor

Branchng ratio (BR)



W’s and Z’s can most 
easily identified via 

electrons and muons

Decay of W, Z bosons

13

Chang
UCSD

W–

e–, µ–, τ–

ve, vµ, vτ
BR ~10% each flavor

Z e+, µ+, τ+

e–, µ–, τ–

BR ~3% each flavor

Branchng ratio (BR)

e.g. If all W’s from pp → WWW decays to e or µ’s ⇒ O(100s) events
If all Z’s from pp → ZZZ decays to e or µ’s ⇒ ~2 events

(more details in later slides)



W’s and Z’s can most 
easily identified via 

electrons and muons

Decay of W, Z bosons

13

Chang
UCSD

W’s and Z’s can be identified via e and µ (but pay the price of BR)

W–

e–, µ–, τ–

ve, vµ, vτ
BR ~10% each flavor

Z e+, µ+, τ+

e–, µ–, τ–

BR ~3% each flavor

Branchng ratio (BR)

e.g. If all W’s from pp → WWW decays to e or µ’s ⇒ O(100s) events
If all Z’s from pp → ZZZ decays to e or µ’s ⇒ ~2 events

(more details in later slides)



W’s and Z’s can most 
easily identified via 

electrons and muons

Decay of W, Z bosons

13

Chang
UCSD

W’s and Z’s can be identified via e and µ (but pay the price of BR)
⇒ Crucial to identify e and µ well

W–

e–, µ–, τ–

ve, vµ, vτ
BR ~10% each flavor

Z e+, µ+, τ+

e–, µ–, τ–

BR ~3% each flavor

Branchng ratio (BR)

e.g. If all W’s from pp → WWW decays to e or µ’s ⇒ O(100s) events
If all Z’s from pp → ZZZ decays to e or µ’s ⇒ ~2 events

(more details in later slides)
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“fake” Lepton
“prompt” Lepton

Identifying leptons is 
not enough

We need to further 
classify the origin

N.B. electrons and muons 
have different effects 
(muons are cleaner)

Use isolation to discriminate against leptons from heavy flavor decay
Dubbed “fake lepton”

non-isolated lepton
⇒ likely from hadrons isolated lepton

⇒ likely from W or Z

Isolation = 
Σ“stuff” in cone PT

PT,Lepton

cone

cone



4 steps to VVV observation
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1. Organize analyses by leptons (likely) from W / Z
• N leptons in the event
• Flavor of the leptons

2. Additional background suppression through smart choices
3. Reliably estimate the size of residual backgrounds
4. Observe VVV!

Smart humans and 
smart machines
(Both cut / BDT)
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Target large # of lepton events for multi-boson productions (∵ lower bkg.)

Final states to look at 
for rare processes

If one only looks 
at 5 or 6 lepton 

events, there will 
be very small 
backgrounds
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VVV analyses overview by N leptons
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Target “fully” leptonic final states to go after first observation
One 

exception

W → lv
W → lv
W → lv

3 leptons
W → lv

Z → ll
W → lv

4 leptons
W → lv
Z → ll
Z → ll

5 leptons
Z → ll
Z → ll
Z → ll

6 leptons
W± → l±v
W± → l±v
W∓ → qq

Same-sign

Si
gn

al
s

~700 evt.~2.5k evt. ~140 evt. ~15 evt. ~1.5 evt.

~5k - 50k produced  →  ~few to ~few k after BR
**Before acceptance and lepton ID efficiency applied
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~700 evt.~2.5k evt. ~140 evt. ~15 evt. ~1.5 evt.

WZ → lvll ZZ → llll ZZ → llll
+ fake lep

ZZ → llll
+ 2 fake lep

WZ → l±vl±l∓
lost

D
om
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an

t 
Bk

gs
.

tt ̅→ bb + ll  + X
fake l

tt ̅→ bb + ll  + X
fake l

ttZ → llll + bbX

WZ→3l ~100k ZZ→4l ~10k
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Different modes populate different N lepton bins
Some cross contamination between N lepton bins exists but is small

Target “fully” leptonic final states to go after first observation
One 

exception

W → lv
W → lv
W → lv

3 leptons
W → lv

Z → ll
W → lv

4 leptons
W → lv
Z → ll
Z → ll

5 leptons
Z → ll
Z → ll
Z → ll

6 leptons
W± → l±v
W± → l±v
W∓ → qq

Same-sign

Si
gn

al
s

~700 evt.~2.5k evt. ~140 evt. ~15 evt. ~1.5 evt.

WZ → lvll ZZ → llll ZZ → llll
+ fake lep

ZZ → llll
+ 2 fake lep

WZ → l±vl±l∓
lost

D
om

in
an

t 
Bk

gs
.

tt ̅→ bb + ll  + X
fake l

tt ̅→ bb + ll  + X
fake l

ttZ → llll + bbX

WZ→3l ~100k ZZ→4l ~10k



Features of Z → ll decay
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Z decays predominantly to ee/µµ on-shell
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µ e→Z 
 (off-shell)µµ ee/→Z 
 (on-shell)µµ ee/→Z 

mll [GeV]
**Simulated w/ MadGraph/Pythia/Delphes with 25/10 GeV PT cuts

Plot of dilepton mass from Z→ll decay

A.
U

.

Z → ee/µµ within Z mass
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E
v
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µ e→Z 
 (off-shell)µµ ee/→Z 
 (on-shell)µµ ee/→Z 

Z → ee/µµ outside Z mass
Z → eµ

If one selects eµ final 
state, Z is reduced by 
2 orders of magnitude

(e, µ from τ are soft)

100x 
smaller

than peak

Z

τ
τ

e+

µ-

v

v

v
v

cf. reduction 
of 10x if 
selecting 

off-Z



Flavor choices
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Z
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Background

Backgrounds are suppressed via disfavored decay topology of Z→ττ→eµ

pp → WWW

W
W

W

pp → WZ

WWW signal
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Background

Backgrounds are suppressed via disfavored decay topology of Z→ττ→eµ

pp → WWW

W
W

W
e+

v
e+

v

v
µ-

0SFOS
“SFOS”

Same-flavor 
opposite-sign pair

 → e+e+µ- pp → WZ

τ
τ

e+

µ-
v
v

v

v

e+

v
0SFOS

highly 
disfavored

 → e+e+µ-

WWW signal



Flavor choices
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Background

Backgrounds are suppressed via disfavored decay topology of Z→ττ→eµ

pp → ZWW pp → ZZ

WWW signal

W
W

Z
Z

Z
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WWW signal
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tagged-Z
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Background

Backgrounds are suppressed via disfavored decay topology of Z→ττ→eµ

pp → ZWW pp → ZZ

WWW signal

W
W

Z
Z

Z

e+

e-
e+

v

v
µ-

Z + eµ

 → (e+e-) e+µ-

tagged-Z

τ
τ

e+

µ-
v
v

v

v

e+

e- Z + eµ

highly 
disfavored

 → (e+e-) e+µ-

tagged-Z



Splitting signal regions by lepton flavors
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W → lv
W → lv
W → lv

3 leptons
W → lv

Z → ll
W → lv

4 leptons

Ta
rg

et
ed

 
si

gn
al

Split by
# of 

SFOS
e.g.

0: e±e±µ∓
1: e±e∓µ±

2: e±e∓e±

tag Z→ll
then split

WW→ee/µµ
v.

WW→eµ

3 categories 2 categories*

Each N lepton analysis is further split by flavors

* marked ones will be further split
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W → lv
W → lv
W → lv

3 leptons
W → lv

Z → ll
W → lv

4 leptons

Ta
rg

et
ed

 
si

gn
al

Split by
# of 

SFOS
e.g.

0: e±e±µ∓
1: e±e∓µ±

2: e±e∓e±

tag Z→ll
then split

WW→ee/µµ
v.

WW→eµ

3 categories 2 categories*

W → lv
Z → ll
Z → ll

5 leptons
Z → ll
Z → ll
Z → ll

6 leptons
W± → l±v
W± → l±v
W∓ → qq

Same-sign
2 leptons

Split by ee/eµ/µµ
(N.B. µ is “cleaner” 

than e) Not enough 
statistics
single bin

9 categories 1 category 1 category

Further split by jets
(viz. on-W, off-W, 1J)

Each N lepton analysis is further split by flavors

* marked ones will be further split



4 steps to VVV observation
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1. Organize analyses by leptons (likely) from W / Z
• N leptons in the event
• Flavor of the leptons

2. Additional background suppression through smart choices
3. Reliably estimate the size of residual backgrounds
4. Observe VVV!

Smart humans and 
smart machines
(Both cut / BDT)

3



b tagging
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B hadrons have 
long lifetime

0
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en

ts

VVV Lost/three leptons Irreducible
Data Nonprompt leptons lepton→γ

Stat. Uncert. Charge missasignment

0 1 2 3

bn
0

0.5
1

1.5
2

D
at

a/
Pr
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.

Preliminary CMS  (13 TeV)-1137 fb

0SFOS channel

ttW̅ → lll + bb

WWW
WZ → lll

3 lep 0SFOS channel

Signals do not have b jets

EW processes generally do not come 
with b jets ⇒ Require # of b = 0

CMS developed 
deep neural network 

based b tagger

After 0SFOS preselection



Added benefit of rejecting events with b
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Preliminary CMS  (13 TeV)-1137 fb

0SFOS channel

ttW̅ → lll + bb

WWW
WZ → lll

3 lep 0SFOS channel

Signals do not have b jets

EW processes generally do not come 
with b jets ⇒ Require # of b = 0

B hadrons have 
long lifetime

Lepton from b 
decay is the main 
source of “fake"

“fake" leptons 
are not isolated

tt ̅→ ll + bb

l
CMS developed 

deep neural network 
based b tagger



Summary of 3 lepton analysis
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• ~10s of WWW events
• 0SFOS dominates in sensitivity
• Statistics limited (but systematics are becoming important)
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Kinematic endpoints for 4 leptons
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Exploit differences between Z → ll v. WW → lvlv

• Recap: 4L split to Z+eµ, Z+ee/µµ
• Utilize mT2 variable: generalization of mT 

for multiple missing particles
• mT2 is sensitive to the end points of mW 

from ZWW→lleµ
• mT2 is sensitive to the end points of mτ 

from ZZ→llττ→lleµ
0
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Kinematic endpoints for 4 leptons
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WWZ contains 2 neutrinos:
WWZ → 4 lepton + 2 neutrino
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WWZ BDTs for 4 leptons analysis
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Created multiple bins in BDTs to maximize sensitivity
⇒ Total of 7 signal regions for 4 lepton analysis
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Summary of 4 lepton
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Signal

• O(10) WWZ events
• Z + eµ bins are most sensitive
• Statistics limited
• main backgrounds are ZZ and ttZ̅ 

• ZZ ~5% uncertainty
• Extrapolation across lepton flavor

• ttZ̅ ~30% uncertainty
• Dominated by CR statistics
• b-tagging uncertainty ~10%



4 lepton event
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Very rare 5 lepton events
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W

Z
Z

e+

e-

e+
v

e+

e-

• Once you make signal selection there aren't much background left
• Two on-Z requirement + 5th lepton with high MT

• Expected total of 2 events with 3:1 signal to background ratio
• And we’ve observed 3 events
• Only now becoming accessible to study!

5 lepton events are clean and are becoming accessible for the first time



5 lepton event display
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e+

e–

Z mass = 
92 GeV

e+

e–

Z mass = 
91 GeV

e+

Missing 
Transverse 

Energy “MET”

W transverse 
mass = 65 GeV Nexp(WZZ→e+ve±e∓e±e∓) ~ 1 event

(cf. LHC provided 1.5 × 1016 collisions)

V = W, Z

33

CMS experiment at the LHC, CERN 
Data recorded: 2016-Oct-09 21:24:05.010240 GMT 

Run 282735, Event No. 989682042 LS 491



6 leptons
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Select at least 6 leptons

Require ΣPT ≥ 250 GeV

Less than 1 event expected
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Putting it all together
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W → lv
W → lv
W → lv

3 leptons
W → lv

Z → ll
W → lv

4 leptons
W → lv
Z → ll
Z → ll

5 leptons
Z → ll
Z → ll
Z → ll

6 leptons
W± → l±v
W± → l±v
W∓ → qq

Same-sign
2 leptons

Si
gn

al
s

Split
Flavor 3 3 2 1 1

Channel 
specific 
splits

mjj-in
mjj-out

1J
-

Split in 
kinematics 

or BDT
- -

Total 9 bins 3 bins 7 bins 1 bin 1 bin

Total of 21 bins
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Results (BDT-based analysis)
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9 bins 3 bins 7 bins 1 1
More sensitive bins are generally to the right

BDT-based analysis is more sensitive so this is our main result

Measured cross section
Theoretical cross sectionSignal strength µ = 



0 1 2 3 4 5 6
µSignal strength 

Combined 1.02 +0.26
-0.23

+0.21
-0.20

WWW 1.15 +0.45
-0.40

+0.32
-0.30

WWZ 0.86 +0.35
-0.31

+0.32
-0.29

WZZ 2.24 +1.92
-1.25

+1.78
-1.24

ZZZ < 5.4Allowed

total stat

CMS  (13 TeV)-1137 fb
BDT
Sequential-cut

Results
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VVV mode Significance [σ]
WWW 3.3 (3.1)
WWZ 3.4 (4.1)
WZZ 1.7 (0.7)
ZZZ 0 (0.9)

Combined 5.7 (5.9)

• We have observed production of three massive gauge boson for the first time!
• We also found evidences separately for the WWW and WWZ production.
• The cross sections are compatible with the standard model expectation.

Measured cross section
Theoretical cross sectionSignal strength µ = 

SM

First observation of VVV and evidences for WWW and WWZ productions

St
at

 li
m

ite
d

O(10) events only
⇒ measure total cross section



Using VVV as a tool
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Now that we have established VVV production we 
can use it to test SM and also search new physics
(cf. Four fermion interaction with Fermi constant)

V
V

V

q

q
EFT

is it SM? Any new physics?

SM
Potential signal

From H. Weber indico.cern.ch/e/900904

Establishment of VVV production opens up a new physics program

q

q
EFTNP

V
V

V



Fully leptonic v. Semi leptonic channel
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• Physics of V → ff is well understood
• We have now established pp → VVV production in “fully” leptonic decay
• Therefore, there ought to be pp → VVV → semi-leptonic
⇒ If new physics alters pp → VVV, it will alter fully / semi leptonic the same

VVV → semi-leptonic ought to have same physics as VVV → fully leptonic

Z
Z

Z

q

q
EFT

v
v

b
b

l
l

NP

If BSM exists, effects are same

Z
Z

Z
l
l

l
l
l

l
q

q
EFTNP



Fully leptonic v. Semi leptonic channel
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Bkg is larger but 
distinct high PT feature 
can discriminate bkg.

BSM tails

SM 
bulk

Z → ll

Merged 
di-b-jet

High MET
Clean channel for 

discovery but 
probing tail is difficult

BSM tails
SM bulk

ZZ → llll
 + fake lepton

LargeSmall
Signal
Bkg.

Signal
Bkg.

We can probe VVV → semi-leptonic for new physics

Z
Z

Z

q

q
EFT

v
v

b
b

l
l

NP

Z
Z

Z
l
l

l
l
l

l
q

q
EFTNP



HL-LHC
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1016 collisions

20x more

We’ve only seen ~5% of the total data LHC will provide in its lifetime



Vector boson scattering
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WW scattering

e±, µ±

e±, µ±

ve, vµ

ve, vµ

Same-sign dilepton + 2 quarks
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arXiv:2005.01173
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WW scattering
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WW scattering results
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• O(100) events observed
• Measure the production rates as 

a function of important variables
• The measured cross section is 

compatible with the SM
• (Small fraction are WLWL 

scattering)

WW scattering cross section has been measured and found to be 
consistent with SM

arXiv:2005.01173



Future of multi-boson interaction
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W±

W±

H

l±

l±

v

v

j

j

Same-sign turns 
LHC into a 

Higgs collider!

pp → W±W±H jj

H

j

j

pp → HH jj

H
Di-higgs 

production

arXiv:1812.09299 Henning, Lombardo, Riembau, Riva
arXiv:2006.09374 Stolarski, Wu

V

j

j

pp → VH jj

H
VH production 
with VBS jets

There are many more rare events that we should search for and study

Same sign Same-sign / 0SFOS
or +++/- - - 3L Same-sign / 0SFOS



More multi-massive-X processes for future
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qqW
EW qqZ

EW
WW
→γγ

γqqW
EW

ssWW
 EW
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EW
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EW

qqZZ
EW tt

=n jet(s)
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Theory prediction

tttt

tt+X

VV

V

tt Higgs

H+X / 
HH

VV 
scattering

WWH, tWWj. ttWW, ttZH

Many more
VVV

arXiv:1812.09299 Henning, Lombardo, Riembau, Riva
arXiv:1511.03674 Dror, Farina, Salvioni, Serra
arXiv:1904.05637 Maltoni, Mantani, Mimasu

There are many more multi-massive-X production to be explored at LHC

j

High PT top 
(> 500 GeV)
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Same-sign turns 
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Higgs collider!

pp → W±W±H Same-sign 
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listing a few multi-massive-X 
processes with same-sign

pp → ttZH
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W
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Summary
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• First observation of VVV productions was made by CMS collaboration
• Also found evidences for WWW and WWZ
• first hints for WZZ production and no hints for ZZZ yet
• The measured cross section is compatible with SM
• This establishes VVV process and opens a unique opportunity to test SM
• New physics can be also searched
• LHC will continue to probe electroweak interactions in various VVV channel

“CMS is the first experiment in the 
history of high energy physics to 

reach this outstanding total of 
papers and with only a fraction of 
the data that the LHC anticipates 
to produce in its lifetime. The LHC 
accelerator at CERN will operate 

for another two decades.”

CERN Courier
This paper is 1000th paper submitted by CMS!
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Backup



What to change for Run 3
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• Lepton ID for many lepton final states
• Custom isolation only useful for same-sign / 3 lepton final states
• Less than ideal for 5 / 6 lepton, which will be more important in Run 3

• Split interpretation by channels and vertex
• Split WWW / WWZ / WZZ / ZZZ
• Further split by VH v. VVV

• WWW v. WH→WWW
• WWZ v. ZH→ZWW
• WZZ v. WH→WZZ
• ZZZ v. ZH→ZZZ

• Work towards combination with other VBS channel
• e.g. In theory, WWW and VBS same-sign WW cannot be separated

• Breaks gauge invariance if remove diagram by hand



Future colliders
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Today
arXiv:2003.09084 The Future

Near(er) Future

Ultimately FCC-hh with 100 TeV collider will map out the Higgs potential 

“Europe, together with its 
international partners, 
should investigate the 
technical and financial 
feasibility of a future hadron 
collider at CERN with a 
centre-of-mass energy of at 
least 100 TeV …”

— 2020 Update of the 
European Strategy for 

Particle Physics



Lepton collider multi-boson physics
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Multi-lepton → Multi-jet final states

⇒ W / Z → qq separation important
⇒ Hadronic calorimeter important (resolution)

Z
W

W
q
q

q
q
q

q
e

e
EFTNP

Z
W

W
v
l

v
l
l

l
e

e
EFTNP

**SM process will likely proceed via ZH

Jet 
assignment?



Physics of VVV production (V = W, Z)

51

Chang
UCSD

Triboson process has access to studying many multi-boson interactions

V

V

V

q

q

V

V

V

q

q

V

V

V

q

q

cubic gauge 
interaction

quartic gauge 
interaction

Higgs-gauge 
interaction

VH→VVV* is part of our 
signal. Their contribution is 
subdominant. (1/3 of signal 

in our signal regions)
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Physics of VVV production (V = W, Z)
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Triboson process has access to studying many multi-boson interactions
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Triboson process has access to studying many multi-boson interactions
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rearrange

Z
Z
Z

Three Z’s radiating
from quark lines

Forbidden 
in SM at 

tree level!

VH→VVV* is part of our 
signal. Their contribution is 
subdominant. (1/3 of signal 

in our signal regions)



Higgs potential
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https://indico.cern.ch/event/687651/contributions/3403318/attachments/1851013/3038718/LHCP2019_TheoryVision_Craig.pdf

What we 
know

How is electroweak 
symmetry broken?

arXiv:1307.3536
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arXiv:1307.3536
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https://indico.cern.ch/event/687651/contributions/3403318/attachments/1851013/3038718/LHCP2019_TheoryVision_Craig.pdf

What we 
know

Standard 
Model 

prediction

New physics? How is electroweak 
symmetry broken?

What is the fate of 
the universe?

arXiv:1307.3536

Understanding Higgs potential have deep implications to cosmology
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Proton beam collision at the LHC
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LHC provides highest energy pp collisions ever recorded

proton
bunches

LHC tunnel

1011 protons
per bunch

~3000 
bunches

25 nanosec 
in between

proton
bunches



Proton beam collision at the LHC
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LHC provides highest energy pp collisions ever recorded

Large dataset of

30-40 pp collisions 
per bunch crossing

(35 pp collisions) × (40 MHz) = 
~1.5 billions pp collisions per second

proton
bunches

LHC tunnel

1011 protons
per bunch

~3000 
bunches

25 nanosec 
in between

proton
bunches



Typical search strategy

55

Chang
UCSD

1. Define low background signal regions (SRs)
2. Estimate background yields by extrapolating from bkg. 

enriched control region (CR)
3. Ascertain accuracy of the extrapolation from a different sample

Uncorrelated 
discriminating Var 1

A

B

CR

SR

Extrapolate

ascertain 
accuracy of 

extrapolation

background distribution

signal distribution
Uncorrelated 

discriminating Var 2

Make smart choices (brains) then execute to deliver (brawns)



Worldwide LHC Computing Grid (Brawns)
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Global collaboration 
of around 170 

computing centers 
in more than 40 

countries



Details on the operation
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Detectors have ~70M channels
× few bytes per channel
× 40 MHz event rate
× 1/1000 zero-suppression
⇒  O(10) TB / s
× “one” year (4 × 106 secs)
⇒ O(100) Exabyte / year
× 1/100,000 event filtering
⇒ ~5 PB / year

After some processing e.g. CMS provides
~10 PB of data and simulation for analysis
This is reprocessed twice a year

Then this is further reduced by x10 and is 
processed monthly

Then we further reduce it x5 and can be 
done in a ~week

And then we further reduce it ~few TB that 
can be processed daily



Recent results in multi-boson physics
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• Several important results have come out recently from both ATLAS and CMS
• I will highlight a few (from CMS)
• (Disclaimer: Rest of the talk from here on will focus mostly on CMS)

WW scattering

e±, µ±

e±, µ±

ve, vµ

ve, vµ

Same-sign dilepton + 2 quarks

q

q
Tri-boson process

4 or 5 leptons

Z→2 lep

W→1 lep

W/Z→1, 2 lep

⇒ electrons, muons, and jets reconstructions are crucial 



Jet formation and identification
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Quarks and gluons produced 
from pp collisions manifest as a 

“jet” of particles

 (GeV)
T

Jet p
200 300 1000 2000

 d
y 

(p
b/

G
eV

)
T

 / 
dp

σ2 d

-310

-110
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310

510

710

910

1110

1310

1510
)6|y| < 0.5 (x10

)50.5 < |y| < 1.0 (x10
)41.0 < |y| < 1.5 (x10
)31.5 < |y| < 2.0 (x10
)22.0 < |y| < 2.5 (x10
)12.5 < |y| < 3.0 (x10
)03.2 < |y| < 4.7 (x10

PH+P8 CUETM1

 (13 TeV)-1< 71 pb

 R = 0.7tAnti-k

CMS

Excellent jet reconstruction and simulation

arXiv:1605.04436



Jets from vector boson scattering
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WW scattering

e±, µ±

e±, µ±

ve, vµ

ve, vµ

Same-sign dilepton + 2 quarks

q

q
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Bkg. unc.
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ZZ
Nonprompt

tVx
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Wrong sign
Other bkg.

 (13 TeV)-1137 fbCMS
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0.6
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D
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SM

Two jets from VBS process tend to have relatively high invariant mass

~100 
events

arXiv:2005.01173
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WW scattering

e±, µ±

e±, µ±

ve, vµ

ve, vµ

Same-sign dilepton + 2 quarks

q

q
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Wrong sign
Other bkg.

 (13 TeV)-1137 fbCMS
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D
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SM

Two jets from VBS process tend to have relatively high invariant mass

Background

Signal

~100 
events

arXiv:2005.01173



Top quark decay features
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Top quark is produced more 
abundantly than multi-bosons
(see slide 9 for typical rates)

When produced top quark 
decays ~100% of the time 
to b quark and a W boson

top

bottom

W

Produces W bosons that are 
not of our interest

bottom quark has a long-lifetime 
(flight distance ~ 100s of µm)

⇒ Tag bottom quark and reject events with bottom quarks



Machine learning in LHC
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b-tagging via machine learning is one of many successful application of 
ML that is continually growing in particle physics

Was this from bottom quark?

Train deep neural network 

Better

CMS-DP-2017-005



b quark jets tagging
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Preliminary CMS  (13 TeV)-1137 fb

0SFOS channel

tt ̅+ W

Tri-boson

tt ̅

Number of b-tagged jets in the event

Reject events with bottom quark to reduced backgrounds from top quark

https://cms-results.web.cern.ch/cms-results/public-
results/superseded/SMP-19-014/index.html
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 [GeV]jjm
500 1000 1500 2000 2500 3000

 [f
b/

G
eV

]
jj

/d
m

σd

0

0.002

0.004

0.006

0.008 Data

MADGRAPH5_aMC@NLO+Pythia8 without NLO corr.
MADGRAPH5_aMC@NLO+Pythia8 with NLO corr.

 (13 TeV)-1137 fbCMS

 [GeV]jjm
500 1000 1500 2000 2500 3000

D
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a
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ry

0.5
1

1.5

• O(100) events observed
• Measure the production rates as 

a function of important variables
• The measured cross section is 

compatible with the SM

WW scattering cross section has been measured and found to be 
consistent with SM

arXiv:2005.01173



Reconstruct W→qq in WWW → l±l±qq
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µ+

µ+

Jet 1
Jet 2
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Preliminary CMS  (13 TeV)-1137 fb

�2 SRsjSS n

W mass window

MET

dijet invariant mass for signal peaks around W mass

80 ± 15 GeV 
window

N.B. some signals are 
outside the window

(See next slide)



Difficulties in jet final states
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 threshold
T

jet p

Difficult to match W → qq
⇒ Select off-W-mass peak region

Difficult to reconstruct both jets
⇒ Select 1 jet (1J) events

2 additional categories (mjj-in, mjj-out, 1J)  each split by ee/eµ/µµ
⇒ Total of 9 signal regions for same-sign analysis

We cover wide range of possible jet final states to maximize sensitivity

signal's dijet mass

correctly 
matched

incorrectly 
matched

about half of 
signal lose 

one jet
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Kinematic endpoints for 4 leptons
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Events are separated into 2 categories by flavor:
• “eµ channel”: (ee/µµ)on-Z-mass + eµ (low bkg.)
• “ee/µµ channel”: (ee/µµ)on-Z-mass + ee/µµ (ee/µµ)on-Z-mass + eµ

(ee/µµ)on-Z-mass + ee/µµ

eµ channel utilizes mT2 variable, which is a 
generalization of mT for multiple missing 

particles. mT2 is sensitive to the end points 
of mτ from ZZ→llττ

ZZ bkg in ee/µµ have low missing energy

Combine these and a few more kinematic 
variables to form total of 7 signal regions 

for 4 lepton analysis

Exploit differences between Z → ll v. WW → lvlv

25 GeV

120 GeV

70 GeV



5 leptons
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Require the 5 lepton events to contain 
two SFOS pair consistent with Z mass

The dominant background is ZZ → llll 
plus a fake lepton

The fake lepton has low transverse 
mass while the signal’s W has 

transverse mass peaking at W mass 0

5
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5 leptons signal region
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Preliminary CMS  (13 TeV)-1137 fb

5 leptons signal region

W mass

Cut-and-count of one bin

Exploit the features of W → lv decay

50 GeV
(only for e+ll+ll channel

µ+ll+ll is clean)

5 leptons target W Z Z signal



Background estimations
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WZ → lvll ZZ → llll ZZ → llll
+ fake lep

ZZ → llll
+ 2 fake lep

WZ → l±vl±l∓
lost

tt ̅→ bb + l + XD
om

in
an

t 
Bk

gs
.

tt ̅→ bb + ll  + X
fake l fake l

ttZ → llll + bbX

3 leptons 4 leptons 5 leptons 6 leptons
Same-sign
2 leptons

Types of backgrounds Suppressed via Bkg. estimation

Fake leptons Isolation Reliably extrapolate across isolation 

Backgrounds with b jets b tagging Reliably extrapolate across b tagging 
Lost leptons Removing events with 3rd lepton Reliably extrapolate across N leptons 
Irreducible Smart flavor choices Reliably extrapolate across flavor 

Reliably extrapolate across the method used to suppress background to 
estimate the size of residual backgrounds in signal region



Rejecting events with b jets
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B hadrons have 
long lifetime
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Preliminary CMS  (13 TeV)-1137 fb

0SFOS channel

ttW̅ → lll + bb

WWW
WZ → lll

3 lep 0SFOS channel

Signals do not have b jets

EW processes generally do not come 
with b jets ⇒ Require # of b = 0

CMS developed 
deep neural network 

based b tagger



Added benefit of rejecting events with b
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ttW̅ → lll + bb

WWW
WZ → lll

3 lep 0SFOS channel

Signals do not have b jets

EW processes generally do not come 
with b jets ⇒ Require # of b = 0

B hadrons have 
long lifetime

Lepton from b 
decay is the main 
source of “fake"

“fake" leptons 
are not isolated

tt ̅→ ll + bb

l
CMS developed 

deep neural network 
based b tagger



WZ background in same-sign channel
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Estimate lost lepton background by extrapolating across # of leptons

Lepton finding efficiency is well modeled by MC

Construct a control region with 3 leptons and 
extrapolate across 3 lepton →  2 leptons

Experimental systematics assigned

Control region data statistics dominates 
uncertainty (20%)

(factors: PT, η, lepton ID)

W

Z

e+

v
µ+

µ-
lost

enters signal region 
via lost lepton ⇒ Need 
to understand lepton 

finding efficiency
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Results (Cut-based analysis)
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9 bins 3 bins 7 bins 1 1
More sensitive bins are generally to the right

Measured cross section
Theoretical cross sectionSignal strength µ = 

Cut-based analysis is also reported for cross check and completeness
(also easier to understand by theorists if re-interpreted)
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mT2
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For WW→ lvlv sub-system of 
WWZ, endpoint is at mW

For Z→ττ→llvvvv sub-system of 
ZZ, endpoint is at mτ
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Process
Higgs boson contributions as signal Higgs boson contributions as background

sequential-cut BDT-based sequential-cut BDT-based

WWW 2.5 (2.9) 3.3 (3.1) 1.0 (1.8) 1.6 (1.9)

WWZ 3.5 (3.6) 3.4 (4.1) 0.9 (2.2) 1.3 (2.2)

WZZ 1.6 (0.7) 1.7 (0.7) 1.7 (0.8) 1.7 (0.8)

ZZZ 0.0 (0.9) 0.0 (0.9) 0.0 (0.9) 0.0 (0.9)

VVV 5.0 (5.4) 5.7 (5.9) 2.3 (3.5) 2.9 (3.5)
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Signal SS mjj-in SS mjj-out SS 1j 3`
region e±e± e±µ± µ±µ± e±e± e±µ± µ±µ± e±e± e±µ± µ±µ± 0 SFOS 1 SFOS 2 SFOS
Lost/three ` 1.4±0.9 5.5±1.6 7.0±1.7 10.7±2.6 9.7±3.6 31.4±3.8 2.5±1.1 41.0±6.1 5.8±1.6 3.5±0.7 25.6±4.2 36.1±3.1
Irreducible 1.0±0.1 0.6±0.1 2.9±0.2 4.7±0.4 1.9±0.2 15.5±1.2 0.4±0.0 4.6±0.2 0.5±0.1 1.3±0.1 1.2±0.1 0.3±0.0
Nonprompt ` 0.6±0.6 3.6±2.4 4.2±1.5 0.8±1.0 2.8±1.5 9.1±4.5 2.5±5.2 2.9±1.4 0.2±0.1 1.8±0.5 7.5±2.3 1.8±1.1
Charge flips <0.1 <0.1 <0.1 4.5±2.5 <0.1 <0.1 <0.1 0.1±0.1 <0.1 <0.1 0.8±1.2 0.3±0.1
g ! nonprompt ` 0.1±0.2 0.1±0.4 <0.1 1.4±0.5 1.1±0.4 0.7±0.4 0.6±1.2 4.8±8.0 <0.1 <0.1 1.0±0.4 0.1±1.5
Background sum 3.1±1.1 9.8±2.9 14.2±2.3 22.1±3.8 15.6±4.0 56.8±6.0 6.0±5.4 53.5±10.1 6.4±1.6 6.6±0.9 36.2±5.0 38.7±3.6
WWW onshell 0.9±0.4 2.3±0.9 4.6±1.7 0.9±0.4 1.0±0.6 3.3±1.3 0.3±0.2 1.2±0.4 0.4±0.2 6.7±2.4 4.3±1.6 1.8±0.7
WH ! WWW 0.4±0.3 1.3±0.9 1.2±0.5 0.5±0.3 1.3±1.3 2.7±1.2 1.1±0.8 6.5±3.1 2.2±1.1 3.4±1.6 5.0±2.1 0.6±0.6
WWW total 1.3±0.5 3.7±1.3 5.8±1.7 1.5±0.5 2.3±1.4 6.0±1.7 1.4±0.8 7.7±3.1 2.5±1.1 10.1±2.9 9.3±2.6 2.4±0.9
WWZ onshell <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2±0.1 <0.1 <0.1
ZH ! WWZ <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1±0.1 0.1±0.1 <0.1
WWZ total <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3±0.1 0.1±0.1 <0.1
WZZ onshell <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
WH ! WZZ <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
WZZ total <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
ZZZ onshell <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
ZH ! ZZZ <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
ZZZ total <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
VVV onshell 0.9±0.4 2.3±0.9 4.6±1.7 0.9±0.4 1.0±0.6 3.3±1.3 0.3±0.2 1.2±0.4 0.4±0.2 6.9±2.4 4.3±1.6 1.8±0.7
VH ! VVV 0.4±0.3 1.3±0.9 1.2±0.5 0.5±0.3 1.3±1.3 2.7±1.2 1.1±0.8 6.5±3.1 2.2±1.1 3.6±1.6 5.1±2.1 0.6±0.6
VVV total 1.3±0.5 3.7±1.3 5.8±1.7 1.5±0.5 2.3±1.4 6.0±1.7 1.4±0.8 7.7±3.1 2.5±1.1 10.4±2.9 9.3±2.6 2.4±0.9
Total 4.4±1.2 13.5±3.2 20.0±2.9 23.6±3.8 17.8±4.2 62.7±6.3 7.4±5.5 61.2±10.6 9.0±2.0 17.0±3.0 45.5±5.6 41.1±3.7
Observed 3 14 15 22 22 67 13 69 8 17 42 39
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Signal 4` eµ 4` ee/µµ 5` 6`
region bin 1 bin 2 bin 3 bin 4 bin 5 bin A bin B
ZZ 15.9±1.0 1.6±0.1 0.6±0.1 0.6±0.1 0.2±0.0 76.4±4.3 2.9±0.3 0.30±0.09 0.01±0.01
ttZ 0.2±0.1 0.1±0.1 2.8±0.5 1.4±0.2 0.1±0.1 1.5±0.3 2.3±0.3 <0.01 <0.01
tWZ 0.1±0.1 0.1±0.1 0.6±0.1 0.7±0.1 0.1±0.1 0.5±0.1 0.7±0.1 <0.01 <0.01
WZ 0.5±0.2 0.2±0.2 0.5±0.2 0.3±0.3 0.1±0.1 1.0±0.4 0.2±0.1 <0.01 <0.01
Other 1.1±0.4 0.5±0.5 0.5±0.2 0.6±0.2 <0.1 2.7±0.6 0.5±0.2 <0.01 <0.01
Background sum 17.8±1.1 2.5±0.5 5.0±0.6 3.6±0.4 0.5±0.1 82.2±4.3 6.6±0.5 0.30±0.09 0.01±0.01
WWW onshell <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
WH ! WWW <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
WWW total <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
WWZ onshell 0.3±0.1 0.4±0.2 1.4±0.7 3.6±1.5 1.0±0.5 2.7±1.2 3.2±1.4 <0.01 <0.01
ZH ! WWZ 1.1±0.5 1.1±0.5 0.5±0.2 1.3±0.5 1.8±0.8 2.9±1.2 1.5±0.6 <0.01 <0.01
WWZ total 1.3±0.5 1.5±0.5 1.9±0.8 4.9±1.6 2.9±0.9 5.6±1.7 4.7±1.5 <0.01 <0.01
WZZ onshell 0.2±0.2 0.1±0.1 0.2±0.2 0.4±0.4 0.1±0.1 0.5±0.4 0.2±0.2 2.62±1.82 0.03±0.05
WH ! WZZ 0.2±0.3 0.2±0.3 <0.1 0.5±0.5 <0.1 <0.1 <0.1 <0.01 <0.01
WZZ total 0.4±0.3 0.3±0.3 0.2±0.2 0.9±0.7 0.1±0.1 0.5±0.4 0.2±0.2 2.62±1.82 0.03±0.05
ZZZ onshell <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
ZH ! ZZZ <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
ZZZ total <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
VVV onshell 0.5±0.2 0.4±0.2 1.6±0.8 4.0±1.5 1.1±0.5 3.2±1.3 3.4±1.4 2.62±1.82 0.03±0.05
VH ! VVV 1.2±0.5 1.3±0.6 0.5±0.2 1.7±0.8 1.8±0.8 2.9±1.2 1.5±0.6 <0.01 <0.01
VVV total 1.7±0.6 1.7±0.6 2.1±0.8 5.8±1.7 3.0±0.9 6.1±1.8 4.8±1.5 2.62±1.82 0.03±0.05
Total 19.5±1.2 4.2±0.8 7.1±1.0 9.4±1.8 3.5±0.9 88.2±4.7 11.4±1.6 2.92±1.82 0.04±0.05
Observed 22 9 7 8 3 80 11 3 0
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Signal SS mjj-in SS mjj-out SS 1j 3`
region e±e± e±µ± µ±µ± e±e± e±µ± µ±µ± e±e± e±µ± µ±µ± 0 SFOS 1 SFOS 2 SFOS
Lost/three ` 1.8±0.4 10.9±2.0 8.7±1.0 8.8±1.7 46.0±6.2 44.8±4.4 8.4±1.3 43.5±4.4 34.5±2.7 4.6±0.8 15.1±1.5 58.3±2.4
Irreducible 2.1±0.4 13.0±3.6 8.4±1.4 9.8±1.4 41.1±4.5 42.8±4.7 2.6±0.6 22.8±8.6 13.2±1.9 2.5±0.9 2.2±1.2 2.5±0.8
Nonprompt ` 1.3±0.9 5.8±2.4 6.8±2.2 2.3±1.3 12.0±6.1 11.2±3.8 1.8±2.9 2.4±1.3 2.8±1.1 3.0±0.9 5.7±1.6 5.9±1.6
Charge flips <0.1 1.2±2.0 <0.1 2.6±1.6 1.0±0.5 <0.1 6.9±4.7 0.2±0.1 <0.1 <0.1 1.1±1.3 0.7±0.2
g ! nonprompt ` 1.4±0.4 2.3±0.9 0.1±0.8 8.6±3.1 19.2±5.1 2.3±0.9 3.8±1.1 19.7±6.0 13.8±7.0 <0.1 0.6±0.7 0.2±0.3
Background sum 6.7±1.2 33.3±5.2 24.0±2.9 32.1±4.3 119±11 101±8 23.6±5.8 88.7±11.4 64.4±7.8 10.1±1.5 24.7±2.9 67.6±3.1
WWW onshell 1.0±0.5 3.3±1.5 3.5±1.6 0.9±0.5 3.9±1.8 4.1±1.9 0.5±0.3 1.8±0.8 1.7±0.9 5.9±2.6 3.8±1.7 2.5±1.2
WH ! WWW 0.2±0.3 1.9±1.5 0.6±0.4 0.4±0.4 1.3±0.8 1.7±1.0 0.8±0.5 4.5±2.7 3.3±2.0 3.0±1.7 2.7±1.5 1.3±0.8
WWW total 1.2±0.6 5.1±2.2 4.1±1.6 1.3±0.6 5.3±2.0 5.7±2.1 1.4±0.6 6.3±2.8 5.0±2.2 8.8±3.1 6.6±2.3 3.8±1.4
WWZ onshell 0.1±0.1 0.3±0.2 0.2±0.1 <0.1 <0.1 0.1±0.1 0.1±0.1 <0.1 <0.1 0.3±0.2 0.2±0.2 0.2±0.1
ZH ! WWZ 0.1±0.1 <0.1 <0.1 <0.1 <0.1 0.3±0.3 <0.1 <0.1 0.4±0.4 0.2±0.1 <0.1 <0.1
WWZ total 0.1±0.2 0.3±0.2 0.2±0.1 <0.1 <0.1 0.4±0.3 0.1±0.1 <0.1 0.4±0.4 0.4±0.2 0.2±0.2 0.2±0.1
WZZ onshell <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
WH ! WZZ <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
WZZ total <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
ZZZ onshell <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
ZH ! ZZZ <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
ZZZ total <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
VVV onshell 1.0±0.5 3.5±1.5 3.7±1.6 0.9±0.5 3.9±1.8 4.2±1.9 0.6±0.3 1.8±0.8 1.7±0.9 6.1±2.6 4.0±1.8 2.7±1.2
VH ! VVV 0.3±0.3 1.9±1.5 0.6±0.4 0.4±0.4 1.3±0.8 2.0±1.0 0.8±0.5 4.5±2.7 3.7±2.0 3.1±1.7 2.7±1.5 1.3±0.8
VVV total 1.3±0.6 5.4±2.2 4.2±1.6 1.3±0.6 5.3±2.0 6.1±2.1 1.4±0.6 6.3±2.8 5.4±2.2 9.3±3.1 6.8±2.3 3.9±1.4
Total 8.0±1.3 38.7±5.6 28.2±3.4 33.5±4.4 125±11 107±8 25.0±5.8 95.0±11.8 69.8±8.1 19.4±3.4 31.4±3.7 71.5±3.4
Observed 5 46 20 31 112 118 29 101 69 20 32 69
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Signal 4` eµ 4` ee/µµ 5` 6`
region bin 4 bin 3 bin 2 bin 1 bin A bin B bin C
ZZ 0.3±0.0 0.7±0.0 0.7±0.0 0.4±0.0 1.8±0.2 6.0±0.6 5.0±0.5 0.30±0.08 0.01±0.01
ttZ 0.2±0.0 0.3±0.1 0.8±0.1 2.3±0.4 1.4±0.2 1.1±0.2 0.2±0.0 <0.01 <0.01
tWZ 0.1±0.1 0.1±0.1 0.3±0.0 0.8±0.1 0.5±0.1 0.3±0.1 0.1±0.1 <0.01 <0.01
WZ 0.2±0.1 0.1±0.1 0.1±0.2 0.6±0.2 <0.1 0.2±0.1 0.1±0.1 <0.01 <0.01
Other <0.1 0.2±0.1 0.6±0.3 0.2±0.1 <0.1 1.4±0.5 0.1±0.1 <0.01 <0.01
Background sum 0.8±0.1 1.4±0.1 2.5±0.3 4.3±0.4 3.7±1.9 9.1±0.8 5.5±0.5 0.30±0.08 0.01±0.01
WWW onshell <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
WH ! WWW <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
WWW total <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
WWZ onshell 0.5±0.2 0.5±0.2 1.1±0.4 4.0±1.6 2.1±0.9 1.2±0.4 0.6±0.2 <0.01 <0.01
ZH ! WWZ 2.3±0.9 1.1±0.4 0.3±0.1 0.1±0.1 0.8±0.3 0.9±0.4 0.5±0.2 <0.01 <0.01
WWZ total 2.8±0.9 1.6±0.5 1.4±0.4 4.1±1.6 2.9±1.0 2.1±0.6 1.1±0.3 <0.01 <0.01
WZZ onshell <0.1 0.1±0.1 0.1±0.1 0.4±0.3 0.2±0.2 0.1±0.1 0.1±0.1 2.17±1.46 0.03±0.04
WH ! WZZ <0.1 0.4±0.3 0.1±0.2 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
WZZ total <0.1 0.4±0.4 0.2±0.2 0.4±0.3 0.2±0.2 0.1±0.1 0.1±0.1 2.17±1.46 0.03±0.04
ZZZ onshell <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
ZH ! ZZZ <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
ZZZ total <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.01
VVV onshell 0.5±0.2 0.6±0.2 1.2±0.4 4.4±1.6 2.3±0.9 1.3±0.5 0.7±0.2 2.17±1.46 0.03±0.04
VH ! VVV 2.3±0.9 1.5±0.5 0.4±0.3 0.1±0.1 0.8±0.3 0.9±0.4 0.5±0.2 <0.01 <0.01
VVV total 2.8±0.9 2.1±0.6 1.6±0.5 4.5±1.6 3.1±1.0 2.2±0.6 1.2±0.3 2.17±1.46 0.03±0.04
Total 3.6±0.9 3.5±0.6 4.1±0.6 8.8±1.7 6.8±2.1 11.3±1.0 6.6±0.6 2.47±1.46 0.04±0.04
Observed 7 1 5 7 6 8 7 3 0
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…after analysis of Run I data, … ➋ mW shifted a 
full s.d. … the mHiggs must be ➌ much lower than 
anyone had anticipated. … Surprises happen.

– D. Amidei, R. Brock  Fermi news 1/17/2003
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Figure 1. Top mass versus time: prediction from EWK fits and
measurements. Recent LHC results are also included. Reproduced
with permisssion from [2] Annual Reviews.

Figure 2. Lowest order diagrams that correlate MW, Mt and MH.
!MW ∝ M2

t in the left diagram, !MW ∝ ln(MH ) in the other two
diagrams. Figure supplied by M W Grünewald.

1. Introduction

The standard model (SM) of particle physics unifies the weak
and electromagnetic forces into a single quantum field theory.
The addition of quantum chromodynamics (QCD), which
describes the strong interactions that bind quarks into protons
and neutrons, completes the SM. The elements of this unified
theory are six quarks, six leptons and five gauge bosons. The
gauge bosons are the W± and Z (carriers of the weak force),
the photon (carrier of the electromagnetic force) and the gluon
(carrier of the strong force). An additional neutral scalar boson,
the Higgs boson, is necessary to explain electroweak (EWK)
symmetry breaking, i.e. the observation of non-zero masses
of the W± and Z bosons. It also generates quark and lepton
masses through the Yukawa interaction. A recent review of
EWK symmetry breaking scenarios can be found in an earlier
issue of this journal [1].

The top quark is the heaviest fundamental fermion. Prior
to its direct observation, its mass was predicted through a
fit to a number of EWK observables sensitive to virtual top
quark effects. This prediction, however, had a very large
uncertainty as it can be seen in the historical plot of the top
mass expectations and measurements presented in figure 1 [2].

The mass of the still unobserved Higgs boson, MH, is
related within the electroweak theory to the W boson mass,
MW, and the top quark mass, Mt , through quantum loop
corrections (for a review see [1]). Some of the lowest order
diagrams that link MW, Mt and MH are shown in figure 2.

Precision measurements of the masses of the W boson
and the top quark are essential to predict the mass of the
Higgs boson. An overall fit of EWK observables, including
the W and the top masses, can put constraints on the Higgs

Figure 3. The relationship between MW, Mt and MH. For each
value of MH, the SM constraints possible values of MW and Mt so
that they have to lie along the corresponding diagonal band. The
dashed contour is the indirect constraint on MW and Mt from
measurements of 18 EWK observables; the solid contour is the
expectation from the MW and Mt direct measurements. All contours
are for the 68% CL fit result [3].

mass [3]. Figure 3 illustrates the relationship between the
three masses, given current measurements. The SM fit of 18
EWK observables (without the mass measurements) constrains
the Higgs mass to lie inside the dashed contour, while the
precision with which the W and top masses are currently known
constrains the Higgs mass to the smaller solid contour. From
the latter we see that a change of 1 GeV/c2 in the top mass shifts
the predicted central value of the Higgs mass by ∼10 GeV/c2.

The discovery of the bottom quark in 1977 [4] set in motion
the search for its partner in the third fermion doublet. Exper-
imental lower limits on the top mass slowly increased from a
few GeV/c2 until the top quark was observed and its mass was
directly measured at the Tevatron 18 years later [5, 6]. A first
hint for the top quark was reported by the CDF collaboration
in [7], together with a mass value of 174 ± 10 ± 13 GeV/c2.
Today, the measured value of the top quark mass is not very
far from this very early estimate. Increased statistics, a better
understanding of detector performance and better measure-
ment techniques have reduced the uncertainty considerably.

The top quark is much heavier than its partner, the bottom
quark, whose mass is about 5 GeV/c2 (see [8] for a review
on quark masses). The Yukawa coupling of the top quark,
λt = 23/4 G1/2

F Mt , is of order unity. This raises the question
if the top quark is distinct from the other quarks, i.e. does it
have a special role in the electroweak symmetry breaking? A
dynamical breaking of EWK theory by a top quark condensate
was proposed even before the top quark was discovered [9],
later extended to a topcolor model [10]. So far no experimental
evidence for the validity of such a model has been found.

1.1. Top mass definition

When referring to quark masses, it is important to define
which theoretical framework is used for the given value of
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Figure 1. Top mass versus time: prediction from EWK fits and
measurements. Recent LHC results are also included. Reproduced
with permisssion from [2] Annual Reviews.

Figure 2. Lowest order diagrams that correlate MW, Mt and MH.
!MW ∝ M2

t in the left diagram, !MW ∝ ln(MH ) in the other two
diagrams. Figure supplied by M W Grünewald.

1. Introduction

The standard model (SM) of particle physics unifies the weak
and electromagnetic forces into a single quantum field theory.
The addition of quantum chromodynamics (QCD), which
describes the strong interactions that bind quarks into protons
and neutrons, completes the SM. The elements of this unified
theory are six quarks, six leptons and five gauge bosons. The
gauge bosons are the W± and Z (carriers of the weak force),
the photon (carrier of the electromagnetic force) and the gluon
(carrier of the strong force). An additional neutral scalar boson,
the Higgs boson, is necessary to explain electroweak (EWK)
symmetry breaking, i.e. the observation of non-zero masses
of the W± and Z bosons. It also generates quark and lepton
masses through the Yukawa interaction. A recent review of
EWK symmetry breaking scenarios can be found in an earlier
issue of this journal [1].

The top quark is the heaviest fundamental fermion. Prior
to its direct observation, its mass was predicted through a
fit to a number of EWK observables sensitive to virtual top
quark effects. This prediction, however, had a very large
uncertainty as it can be seen in the historical plot of the top
mass expectations and measurements presented in figure 1 [2].

The mass of the still unobserved Higgs boson, MH, is
related within the electroweak theory to the W boson mass,
MW, and the top quark mass, Mt , through quantum loop
corrections (for a review see [1]). Some of the lowest order
diagrams that link MW, Mt and MH are shown in figure 2.

Precision measurements of the masses of the W boson
and the top quark are essential to predict the mass of the
Higgs boson. An overall fit of EWK observables, including
the W and the top masses, can put constraints on the Higgs

Figure 3. The relationship between MW, Mt and MH. For each
value of MH, the SM constraints possible values of MW and Mt so
that they have to lie along the corresponding diagonal band. The
dashed contour is the indirect constraint on MW and Mt from
measurements of 18 EWK observables; the solid contour is the
expectation from the MW and Mt direct measurements. All contours
are for the 68% CL fit result [3].

mass [3]. Figure 3 illustrates the relationship between the
three masses, given current measurements. The SM fit of 18
EWK observables (without the mass measurements) constrains
the Higgs mass to lie inside the dashed contour, while the
precision with which the W and top masses are currently known
constrains the Higgs mass to the smaller solid contour. From
the latter we see that a change of 1 GeV/c2 in the top mass shifts
the predicted central value of the Higgs mass by ∼10 GeV/c2.

The discovery of the bottom quark in 1977 [4] set in motion
the search for its partner in the third fermion doublet. Exper-
imental lower limits on the top mass slowly increased from a
few GeV/c2 until the top quark was observed and its mass was
directly measured at the Tevatron 18 years later [5, 6]. A first
hint for the top quark was reported by the CDF collaboration
in [7], together with a mass value of 174 ± 10 ± 13 GeV/c2.
Today, the measured value of the top quark mass is not very
far from this very early estimate. Increased statistics, a better
understanding of detector performance and better measure-
ment techniques have reduced the uncertainty considerably.

The top quark is much heavier than its partner, the bottom
quark, whose mass is about 5 GeV/c2 (see [8] for a review
on quark masses). The Yukawa coupling of the top quark,
λt = 23/4 G1/2

F Mt , is of order unity. This raises the question
if the top quark is distinct from the other quarks, i.e. does it
have a special role in the electroweak symmetry breaking? A
dynamical breaking of EWK theory by a top quark condensate
was proposed even before the top quark was discovered [9],
later extended to a topcolor model [10]. So far no experimental
evidence for the validity of such a model has been found.
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Figure 1. Top mass versus time: prediction from EWK fits and
measurements. Recent LHC results are also included. Reproduced
with permisssion from [2] Annual Reviews.

Figure 2. Lowest order diagrams that correlate MW, Mt and MH.
!MW ∝ M2

t in the left diagram, !MW ∝ ln(MH ) in the other two
diagrams. Figure supplied by M W Grünewald.

1. Introduction

The standard model (SM) of particle physics unifies the weak
and electromagnetic forces into a single quantum field theory.
The addition of quantum chromodynamics (QCD), which
describes the strong interactions that bind quarks into protons
and neutrons, completes the SM. The elements of this unified
theory are six quarks, six leptons and five gauge bosons. The
gauge bosons are the W± and Z (carriers of the weak force),
the photon (carrier of the electromagnetic force) and the gluon
(carrier of the strong force). An additional neutral scalar boson,
the Higgs boson, is necessary to explain electroweak (EWK)
symmetry breaking, i.e. the observation of non-zero masses
of the W± and Z bosons. It also generates quark and lepton
masses through the Yukawa interaction. A recent review of
EWK symmetry breaking scenarios can be found in an earlier
issue of this journal [1].

The top quark is the heaviest fundamental fermion. Prior
to its direct observation, its mass was predicted through a
fit to a number of EWK observables sensitive to virtual top
quark effects. This prediction, however, had a very large
uncertainty as it can be seen in the historical plot of the top
mass expectations and measurements presented in figure 1 [2].

The mass of the still unobserved Higgs boson, MH, is
related within the electroweak theory to the W boson mass,
MW, and the top quark mass, Mt , through quantum loop
corrections (for a review see [1]). Some of the lowest order
diagrams that link MW, Mt and MH are shown in figure 2.

Precision measurements of the masses of the W boson
and the top quark are essential to predict the mass of the
Higgs boson. An overall fit of EWK observables, including
the W and the top masses, can put constraints on the Higgs

Figure 3. The relationship between MW, Mt and MH. For each
value of MH, the SM constraints possible values of MW and Mt so
that they have to lie along the corresponding diagonal band. The
dashed contour is the indirect constraint on MW and Mt from
measurements of 18 EWK observables; the solid contour is the
expectation from the MW and Mt direct measurements. All contours
are for the 68% CL fit result [3].

mass [3]. Figure 3 illustrates the relationship between the
three masses, given current measurements. The SM fit of 18
EWK observables (without the mass measurements) constrains
the Higgs mass to lie inside the dashed contour, while the
precision with which the W and top masses are currently known
constrains the Higgs mass to the smaller solid contour. From
the latter we see that a change of 1 GeV/c2 in the top mass shifts
the predicted central value of the Higgs mass by ∼10 GeV/c2.

The discovery of the bottom quark in 1977 [4] set in motion
the search for its partner in the third fermion doublet. Exper-
imental lower limits on the top mass slowly increased from a
few GeV/c2 until the top quark was observed and its mass was
directly measured at the Tevatron 18 years later [5, 6]. A first
hint for the top quark was reported by the CDF collaboration
in [7], together with a mass value of 174 ± 10 ± 13 GeV/c2.
Today, the measured value of the top quark mass is not very
far from this very early estimate. Increased statistics, a better
understanding of detector performance and better measure-
ment techniques have reduced the uncertainty considerably.

The top quark is much heavier than its partner, the bottom
quark, whose mass is about 5 GeV/c2 (see [8] for a review
on quark masses). The Yukawa coupling of the top quark,
λt = 23/4 G1/2

F Mt , is of order unity. This raises the question
if the top quark is distinct from the other quarks, i.e. does it
have a special role in the electroweak symmetry breaking? A
dynamical breaking of EWK theory by a top quark condensate
was proposed even before the top quark was discovered [9],
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evidence for the validity of such a model has been found.
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Today, the measured value of the top quark mass is not very
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ment techniques have reduced the uncertainty considerably.
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quark, whose mass is about 5 GeV/c2 (see [8] for a review
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have a special role in the electroweak symmetry breaking? A
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later extended to a topcolor model [10]. So far no experimental
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Figure 1: A historical perspective of values of a few particle properties tabulated in this Review as a function of date of publication of the
Review. A full error bar indicates the quoted error; a thick-lined portion indicates the same but without the “scale factor.”
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Figure 1: A historical perspective of values of a few particle properties tabulated in this Review as a function of date of publication of the
Review. A full error bar indicates the quoted error; a thick-lined portion indicates the same but without the “scale factor.”
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History tells us with more data we get smarter; also surprises happen
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Z µµ decays
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